Metamath Proof Explorer


Theorem fvmptss2

Description: A mapping always evaluates to a subset of the substituted expression in the mapping, even if this is a proper class, or we are out of the domain. (Contributed by Mario Carneiro, 13-Feb-2015)

Ref Expression
Hypotheses fvmptn.1 x=DB=C
fvmptn.2 F=xAB
Assertion fvmptss2 FDC

Proof

Step Hyp Ref Expression
1 fvmptn.1 x=DB=C
2 fvmptn.2 F=xAB
3 1 eleq1d x=DBVCV
4 2 dmmpt domF=xA|BV
5 3 4 elrab2 DdomFDACV
6 1 2 fvmptg DACVFD=C
7 eqimss FD=CFDC
8 6 7 syl DACVFDC
9 5 8 sylbi DdomFFDC
10 ndmfv ¬DdomFFD=
11 0ss C
12 10 11 eqsstrdi ¬DdomFFDC
13 9 12 pm2.61i FDC