Description: Induction on the integers from M to N inclusive. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. Version of fzind using integer range definitions. (Contributed by Mario Carneiro, 6-Feb-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fzind2.1 | |
|
fzind2.2 | |
||
fzind2.3 | |
||
fzind2.4 | |
||
fzind2.5 | |
||
fzind2.6 | |
||
Assertion | fzind2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fzind2.1 | |
|
2 | fzind2.2 | |
|
3 | fzind2.3 | |
|
4 | fzind2.4 | |
|
5 | fzind2.5 | |
|
6 | fzind2.6 | |
|
7 | elfz2 | |
|
8 | anass | |
|
9 | df-3an | |
|
10 | 9 | anbi1i | |
11 | 3anass | |
|
12 | 11 | anbi2i | |
13 | 8 10 12 | 3bitr4i | |
14 | 7 13 | bitri | |
15 | eluz2 | |
|
16 | 15 5 | sylbir | |
17 | 3anass | |
|
18 | elfzo | |
|
19 | 18 6 | syl6bir | |
20 | 19 | 3coml | |
21 | 20 | 3expa | |
22 | 21 | impr | |
23 | 17 22 | sylan2b | |
24 | 1 2 3 4 16 23 | fzind | |
25 | 14 24 | sylbi | |