Metamath Proof Explorer


Theorem fzind2

Description: Induction on the integers from M to N inclusive. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. Version of fzind using integer range definitions. (Contributed by Mario Carneiro, 6-Feb-2016)

Ref Expression
Hypotheses fzind2.1 x=Mφψ
fzind2.2 x=yφχ
fzind2.3 x=y+1φθ
fzind2.4 x=Kφτ
fzind2.5 NMψ
fzind2.6 yM..^Nχθ
Assertion fzind2 KMNτ

Proof

Step Hyp Ref Expression
1 fzind2.1 x=Mφψ
2 fzind2.2 x=yφχ
3 fzind2.3 x=y+1φθ
4 fzind2.4 x=Kφτ
5 fzind2.5 NMψ
6 fzind2.6 yM..^Nχθ
7 elfz2 KMNMNKMKKN
8 anass MNKMKKNMNKMKKN
9 df-3an MNKMNK
10 9 anbi1i MNKMKKNMNKMKKN
11 3anass KMKKNKMKKN
12 11 anbi2i MNKMKKNMNKMKKN
13 8 10 12 3bitr4i MNKMKKNMNKMKKN
14 7 13 bitri KMNMNKMKKN
15 eluz2 NMMNMN
16 15 5 sylbir MNMNψ
17 3anass yMyy<NyMyy<N
18 elfzo yMNyM..^NMyy<N
19 18 6 syl6bir yMNMyy<Nχθ
20 19 3coml MNyMyy<Nχθ
21 20 3expa MNyMyy<Nχθ
22 21 impr MNyMyy<Nχθ
23 17 22 sylan2b MNyMyy<Nχθ
24 1 2 3 4 16 23 fzind MNKMKKNτ
25 14 24 sylbi KMNτ