Metamath Proof Explorer


Theorem fzneuz

Description: No finite set of sequential integers equals an upper set of integers. (Contributed by NM, 11-Dec-2005)

Ref Expression
Assertion fzneuz NMK¬MN=K

Proof

Step Hyp Ref Expression
1 peano2uz NKN+1K
2 eluzelre NMN
3 ltp1 NN<N+1
4 peano2re NN+1
5 ltnle NN+1N<N+1¬N+1N
6 4 5 mpdan NN<N+1¬N+1N
7 3 6 mpbid N¬N+1N
8 2 7 syl NM¬N+1N
9 elfzle2 N+1MNN+1N
10 8 9 nsyl NM¬N+1MN
11 10 ad2antrr NMKNK¬N+1MN
12 nelneq2 N+1K¬N+1MN¬K=MN
13 1 11 12 syl2an2 NMKNK¬K=MN
14 eqcom K=MNMN=K
15 13 14 sylnib NMKNK¬MN=K
16 eluzfz2 NMNMN
17 16 ad2antrr NMK¬NKNMN
18 nelneq2 NMN¬NK¬MN=K
19 17 18 sylancom NMK¬NK¬MN=K
20 15 19 pm2.61dan NMK¬MN=K