Metamath Proof Explorer


Theorem fzofzp1b

Description: If a point is in a half-open range, the next point is in the closed range. (Contributed by Mario Carneiro, 27-Sep-2015)

Ref Expression
Assertion fzofzp1b CACA..^BC+1AB

Proof

Step Hyp Ref Expression
1 fzofzp1 CA..^BC+1AB
2 simpl CAC+1ABCA
3 eluzelz CAC
4 elfzuz3 C+1ABBC+1
5 eluzp1m1 CBC+1B1C
6 3 4 5 syl2an CAC+1ABB1C
7 elfzuzb CAB1CAB1C
8 2 6 7 sylanbrc CAC+1ABCAB1
9 elfzel2 C+1ABB
10 9 adantl CAC+1ABB
11 fzoval BA..^B=AB1
12 10 11 syl CAC+1ABA..^B=AB1
13 8 12 eleqtrrd CAC+1ABCA..^B
14 13 ex CAC+1ABCA..^B
15 1 14 impbid2 CACA..^BC+1AB