Metamath Proof Explorer


Theorem fzofzp1b

Description: If a point is in a half-open range, the next point is in the closed range. (Contributed by Mario Carneiro, 27-Sep-2015)

Ref Expression
Assertion fzofzp1b C A C A ..^ B C + 1 A B

Proof

Step Hyp Ref Expression
1 fzofzp1 C A ..^ B C + 1 A B
2 simpl C A C + 1 A B C A
3 eluzelz C A C
4 elfzuz3 C + 1 A B B C + 1
5 eluzp1m1 C B C + 1 B 1 C
6 3 4 5 syl2an C A C + 1 A B B 1 C
7 elfzuzb C A B 1 C A B 1 C
8 2 6 7 sylanbrc C A C + 1 A B C A B 1
9 elfzel2 C + 1 A B B
10 9 adantl C A C + 1 A B B
11 fzoval B A ..^ B = A B 1
12 10 11 syl C A C + 1 A B A ..^ B = A B 1
13 8 12 eleqtrrd C A C + 1 A B C A ..^ B
14 13 ex C A C + 1 A B C A ..^ B
15 1 14 impbid2 C A C A ..^ B C + 1 A B