Metamath Proof Explorer


Theorem fzrevral

Description: Reversal of scanning order inside of a universal quantification restricted to a finite set of sequential integers. (Contributed by NM, 25-Nov-2005)

Ref Expression
Assertion fzrevral MNKjMNφkKNKM[˙Kk/j]˙φ

Proof

Step Hyp Ref Expression
1 simpr MNKkKNKMkKNKM
2 elfzelz kKNKMk
3 fzrev MNKkkKNKMKkMN
4 3 anassrs MNKkkKNKMKkMN
5 2 4 sylan2 MNKkKNKMkKNKMKkMN
6 1 5 mpbid MNKkKNKMKkMN
7 rspsbc KkMNjMNφ[˙Kk/j]˙φ
8 6 7 syl MNKkKNKMjMNφ[˙Kk/j]˙φ
9 8 ex3 MNKkKNKMjMNφ[˙Kk/j]˙φ
10 9 com23 MNKjMNφkKNKM[˙Kk/j]˙φ
11 10 ralrimdv MNKjMNφkKNKM[˙Kk/j]˙φ
12 nfv jK
13 nfcv _jKNKM
14 nfsbc1v j[˙Kk/j]˙φ
15 13 14 nfralw jkKNKM[˙Kk/j]˙φ
16 fzrev2i KjMNKjKNKM
17 oveq2 k=KjKk=KKj
18 17 sbceq1d k=Kj[˙Kk/j]˙φ[˙KKj/j]˙φ
19 18 rspcv KjKNKMkKNKM[˙Kk/j]˙φ[˙KKj/j]˙φ
20 16 19 syl KjMNkKNKM[˙Kk/j]˙φ[˙KKj/j]˙φ
21 zcn KK
22 elfzelz jMNj
23 22 zcnd jMNj
24 nncan KjKKj=j
25 21 23 24 syl2an KjMNKKj=j
26 25 eqcomd KjMNj=KKj
27 sbceq1a j=KKjφ[˙KKj/j]˙φ
28 26 27 syl KjMNφ[˙KKj/j]˙φ
29 20 28 sylibrd KjMNkKNKM[˙Kk/j]˙φφ
30 29 ex KjMNkKNKM[˙Kk/j]˙φφ
31 30 com23 KkKNKM[˙Kk/j]˙φjMNφ
32 12 15 31 ralrimd KkKNKM[˙Kk/j]˙φjMNφ
33 32 3ad2ant3 MNKkKNKM[˙Kk/j]˙φjMNφ
34 11 33 impbid MNKjMNφkKNKM[˙Kk/j]˙φ