Metamath Proof Explorer


Theorem fzto1stfv1

Description: Value of our permutation P at 1. (Contributed by Thierry Arnoux, 23-Aug-2020)

Ref Expression
Hypotheses psgnfzto1st.d D=1N
psgnfzto1st.p P=iDifi=1IifiIi1i
Assertion fzto1stfv1 IDP1=I

Proof

Step Hyp Ref Expression
1 psgnfzto1st.d D=1N
2 psgnfzto1st.p P=iDifi=1IifiIi1i
3 iftrue i=1ifi=1IifiIi1i=I
4 elfzuz2 I1NN1
5 4 1 eleq2s IDN1
6 eluzfz1 N111N
7 6 1 eleqtrrdi N11D
8 5 7 syl ID1D
9 id IDID
10 2 3 8 9 fvmptd3 IDP1=I