Metamath Proof Explorer


Theorem gchaleph2

Description: If ( alephA ) and ( alephsuc A ) are GCH-sets, then the successor aleph ( alephsuc A ) is equinumerous to the powerset of ( alephA ) . (Contributed by Mario Carneiro, 31-May-2015)

Ref Expression
Assertion gchaleph2 A On A GCH suc A GCH suc A 𝒫 A

Proof

Step Hyp Ref Expression
1 harcl har A On
2 alephon A On
3 onenon A On A dom card
4 harsdom A dom card A har A
5 2 3 4 mp2b A har A
6 simp1 A On A GCH suc A GCH A On
7 alephgeom A On ω A
8 6 7 sylib A On A GCH suc A GCH ω A
9 ssdomg A On ω A ω A
10 2 8 9 mpsyl A On A GCH suc A GCH ω A
11 simp2 A On A GCH suc A GCH A GCH
12 alephsuc A On suc A = har A
13 6 12 syl A On A GCH suc A GCH suc A = har A
14 simp3 A On A GCH suc A GCH suc A GCH
15 13 14 eqeltrrd A On A GCH suc A GCH har A GCH
16 gchpwdom ω A A GCH har A GCH A har A 𝒫 A har A
17 10 11 15 16 syl3anc A On A GCH suc A GCH A har A 𝒫 A har A
18 5 17 mpbii A On A GCH suc A GCH 𝒫 A har A
19 ondomen har A On 𝒫 A har A 𝒫 A dom card
20 1 18 19 sylancr A On A GCH suc A GCH 𝒫 A dom card
21 gchaleph A On A GCH 𝒫 A dom card suc A 𝒫 A
22 20 21 syld3an3 A On A GCH suc A GCH suc A 𝒫 A