Metamath Proof Explorer


Theorem gchi

Description: The only GCH-sets which have other sets between it and its power set are finite sets. (Contributed by Mario Carneiro, 15-May-2015)

Ref Expression
Assertion gchi AGCHABB𝒫AAFin

Proof

Step Hyp Ref Expression
1 relsdom Rel
2 1 brrelex1i B𝒫ABV
3 2 adantl ABB𝒫ABV
4 breq2 x=BAxAB
5 breq1 x=Bx𝒫AB𝒫A
6 4 5 anbi12d x=BAxx𝒫AABB𝒫A
7 6 spcegv BVABB𝒫AxAxx𝒫A
8 3 7 mpcom ABB𝒫AxAxx𝒫A
9 df-ex xAxx𝒫A¬x¬Axx𝒫A
10 8 9 sylib ABB𝒫A¬x¬Axx𝒫A
11 elgch AGCHAGCHAFinx¬Axx𝒫A
12 11 ibi AGCHAFinx¬Axx𝒫A
13 12 orcomd AGCHx¬Axx𝒫AAFin
14 13 ord AGCH¬x¬Axx𝒫AAFin
15 10 14 syl5 AGCHABB𝒫AAFin
16 15 3impib AGCHABB𝒫AAFin