Metamath Proof Explorer


Theorem geoisum

Description: The infinite sum of 1 + A ^ 1 + A ^ 2 ... is ( 1 / ( 1 - A ) ) . (Contributed by NM, 15-May-2006) (Revised by Mario Carneiro, 26-Apr-2014)

Ref Expression
Assertion geoisum AA<1k0Ak=11A

Proof

Step Hyp Ref Expression
1 nn0uz 0=0
2 0zd AA<10
3 oveq2 n=kAn=Ak
4 eqid n0An=n0An
5 ovex AkV
6 3 4 5 fvmpt k0n0Ank=Ak
7 6 adantl AA<1k0n0Ank=Ak
8 expcl Ak0Ak
9 8 adantlr AA<1k0Ak
10 simpl AA<1A
11 simpr AA<1A<1
12 10 11 7 geolim AA<1seq0+n0An11A
13 1 2 7 9 12 isumclim AA<1k0Ak=11A