Description: Any group element is annihilated by any multiple of the group exponent. (Contributed by Mario Carneiro, 24-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | gexcl.1 | |
|
gexcl.2 | |
||
gexid.3 | |
||
gexid.4 | |
||
Assertion | gexdvdsi | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gexcl.1 | |
|
2 | gexcl.2 | |
|
3 | gexid.3 | |
|
4 | gexid.4 | |
|
5 | simp3 | |
|
6 | dvdszrcl | |
|
7 | divides | |
|
8 | 6 7 | biadanii | |
9 | 5 8 | sylib | |
10 | 9 | simprd | |
11 | simpl1 | |
|
12 | simpr | |
|
13 | 9 | simplld | |
14 | 13 | adantr | |
15 | simpl2 | |
|
16 | 1 3 | mulgass | |
17 | 11 12 14 15 16 | syl13anc | |
18 | 1 2 3 4 | gexid | |
19 | 15 18 | syl | |
20 | 19 | oveq2d | |
21 | 1 3 4 | mulgz | |
22 | 21 | 3ad2antl1 | |
23 | 17 20 22 | 3eqtrd | |
24 | oveq1 | |
|
25 | 24 | eqeq1d | |
26 | 23 25 | syl5ibcom | |
27 | 26 | rexlimdva | |
28 | 10 27 | mpd | |