Metamath Proof Explorer


Theorem gexdvdsi

Description: Any group element is annihilated by any multiple of the group exponent. (Contributed by Mario Carneiro, 24-Apr-2016)

Ref Expression
Hypotheses gexcl.1 X=BaseG
gexcl.2 E=gExG
gexid.3 ·˙=G
gexid.4 0˙=0G
Assertion gexdvdsi GGrpAXENN·˙A=0˙

Proof

Step Hyp Ref Expression
1 gexcl.1 X=BaseG
2 gexcl.2 E=gExG
3 gexid.3 ·˙=G
4 gexid.4 0˙=0G
5 simp3 GGrpAXENEN
6 dvdszrcl ENEN
7 divides ENENxxE=N
8 6 7 biadanii ENENxxE=N
9 5 8 sylib GGrpAXENENxxE=N
10 9 simprd GGrpAXENxxE=N
11 simpl1 GGrpAXENxGGrp
12 simpr GGrpAXENxx
13 9 simplld GGrpAXENE
14 13 adantr GGrpAXENxE
15 simpl2 GGrpAXENxAX
16 1 3 mulgass GGrpxEAXxE·˙A=x·˙E·˙A
17 11 12 14 15 16 syl13anc GGrpAXENxxE·˙A=x·˙E·˙A
18 1 2 3 4 gexid AXE·˙A=0˙
19 15 18 syl GGrpAXENxE·˙A=0˙
20 19 oveq2d GGrpAXENxx·˙E·˙A=x·˙0˙
21 1 3 4 mulgz GGrpxx·˙0˙=0˙
22 21 3ad2antl1 GGrpAXENxx·˙0˙=0˙
23 17 20 22 3eqtrd GGrpAXENxxE·˙A=0˙
24 oveq1 xE=NxE·˙A=N·˙A
25 24 eqeq1d xE=NxE·˙A=0˙N·˙A=0˙
26 23 25 syl5ibcom GGrpAXENxxE=NN·˙A=0˙
27 26 rexlimdva GGrpAXENxxE=NN·˙A=0˙
28 10 27 mpd GGrpAXENN·˙A=0˙