Description: Any element to the power of the group exponent. (Contributed by Mario Carneiro, 24-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | gexcl.1 | |
|
gexcl.2 | |
||
gexid.3 | |
||
gexid.4 | |
||
Assertion | gexid | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gexcl.1 | |
|
2 | gexcl.2 | |
|
3 | gexid.3 | |
|
4 | gexid.4 | |
|
5 | oveq1 | |
|
6 | 1 4 3 | mulg0 | |
7 | 5 6 | sylan9eqr | |
8 | 7 | adantrr | |
9 | oveq1 | |
|
10 | 9 | eqeq1d | |
11 | 10 | ralbidv | |
12 | 11 | elrab | |
13 | 12 | simprbi | |
14 | oveq2 | |
|
15 | 14 | eqeq1d | |
16 | 15 | rspcva | |
17 | 13 16 | sylan2 | |
18 | elfvex | |
|
19 | 18 1 | eleq2s | |
20 | eqid | |
|
21 | 1 3 4 2 20 | gexlem1 | |
22 | 19 21 | syl | |
23 | 8 17 22 | mpjaodan | |