Description: The image of a commutative monoid G under a group homomorphism F is a commutative monoid. (Contributed by Thierry Arnoux, 26-Jan-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ghmabl.x | |
|
ghmabl.y | |
||
ghmabl.p | |
||
ghmabl.q | |
||
ghmabl.f | |
||
ghmabl.1 | |
||
ghmcmn.3 | |
||
Assertion | ghmcmn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ghmabl.x | |
|
2 | ghmabl.y | |
|
3 | ghmabl.p | |
|
4 | ghmabl.q | |
|
5 | ghmabl.f | |
|
6 | ghmabl.1 | |
|
7 | ghmcmn.3 | |
|
8 | cmnmnd | |
|
9 | 7 8 | syl | |
10 | 5 1 2 3 4 6 9 | mhmmnd | |
11 | simp-6l | |
|
12 | 11 7 | syl | |
13 | simp-4r | |
|
14 | simplr | |
|
15 | 1 3 | cmncom | |
16 | 12 13 14 15 | syl3anc | |
17 | 16 | fveq2d | |
18 | 11 5 | syl3an1 | |
19 | 18 13 14 | mhmlem | |
20 | 18 14 13 | mhmlem | |
21 | 17 19 20 | 3eqtr3d | |
22 | simpllr | |
|
23 | simpr | |
|
24 | 22 23 | oveq12d | |
25 | 23 22 | oveq12d | |
26 | 21 24 25 | 3eqtr3d | |
27 | foelcdmi | |
|
28 | 6 27 | sylan | |
29 | 28 | ad5ant13 | |
30 | 26 29 | r19.29a | |
31 | foelcdmi | |
|
32 | 6 31 | sylan | |
33 | 32 | adantr | |
34 | 30 33 | r19.29a | |
35 | 34 | anasss | |
36 | 35 | ralrimivva | |
37 | 2 4 | iscmn | |
38 | 10 36 37 | sylanbrc | |