Description: Lemma for ghmqusker . (Contributed by Thierry Arnoux, 14-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ghmqusker.1 | |
|
ghmqusker.f | |
||
ghmqusker.k | |
||
ghmqusker.q | |
||
ghmqusker.j | |
||
ghmquskerlem2.y | |
||
Assertion | ghmquskerlem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ghmqusker.1 | |
|
2 | ghmqusker.f | |
|
3 | ghmqusker.k | |
|
4 | ghmqusker.q | |
|
5 | ghmqusker.j | |
|
6 | ghmquskerlem2.y | |
|
7 | 4 | a1i | |
8 | eqidd | |
|
9 | ovexd | |
|
10 | ghmgrp1 | |
|
11 | 2 10 | syl | |
12 | 7 8 9 11 | qusbas | |
13 | 6 12 | eleqtrrd | |
14 | elqsg | |
|
15 | 14 | biimpa | |
16 | 6 13 15 | syl2anc | |
17 | 1 | ghmker | |
18 | nsgsubg | |
|
19 | 2 17 18 | 3syl | |
20 | 3 19 | eqeltrid | |
21 | eqid | |
|
22 | eqid | |
|
23 | 21 22 | eqger | |
24 | 20 23 | syl | |
25 | 24 | ad2antrr | |
26 | simplr | |
|
27 | ecref | |
|
28 | 25 26 27 | syl2anc | |
29 | simpr | |
|
30 | 28 29 | eleqtrrd | |
31 | 29 | fveq2d | |
32 | 2 | ad2antrr | |
33 | 1 32 3 4 5 26 | ghmquskerlem1 | |
34 | 31 33 | eqtrd | |
35 | 30 34 | jca | |
36 | 35 | expl | |
37 | 36 | reximdv2 | |
38 | 16 37 | mpd | |