Metamath Proof Explorer


Theorem ghmquskerlem2

Description: Lemma for ghmqusker . (Contributed by Thierry Arnoux, 14-Feb-2025)

Ref Expression
Hypotheses ghmqusker.1 0˙=0H
ghmqusker.f φFGGrpHomH
ghmqusker.k K=F-10˙
ghmqusker.q Q=G/𝑠G~QGK
ghmqusker.j J=qBaseQFq
ghmquskerlem2.y φYBaseQ
Assertion ghmquskerlem2 φxYJY=Fx

Proof

Step Hyp Ref Expression
1 ghmqusker.1 0˙=0H
2 ghmqusker.f φFGGrpHomH
3 ghmqusker.k K=F-10˙
4 ghmqusker.q Q=G/𝑠G~QGK
5 ghmqusker.j J=qBaseQFq
6 ghmquskerlem2.y φYBaseQ
7 4 a1i φQ=G/𝑠G~QGK
8 eqidd φBaseG=BaseG
9 ovexd φG~QGKV
10 ghmgrp1 FGGrpHomHGGrp
11 2 10 syl φGGrp
12 7 8 9 11 qusbas φBaseG/G~QGK=BaseQ
13 6 12 eleqtrrd φYBaseG/G~QGK
14 elqsg YBaseQYBaseG/G~QGKxBaseGY=xG~QGK
15 14 biimpa YBaseQYBaseG/G~QGKxBaseGY=xG~QGK
16 6 13 15 syl2anc φxBaseGY=xG~QGK
17 1 ghmker FGGrpHomHF-10˙NrmSGrpG
18 nsgsubg F-10˙NrmSGrpGF-10˙SubGrpG
19 2 17 18 3syl φF-10˙SubGrpG
20 3 19 eqeltrid φKSubGrpG
21 eqid BaseG=BaseG
22 eqid G~QGK=G~QGK
23 21 22 eqger KSubGrpGG~QGKErBaseG
24 20 23 syl φG~QGKErBaseG
25 24 ad2antrr φxBaseGY=xG~QGKG~QGKErBaseG
26 simplr φxBaseGY=xG~QGKxBaseG
27 ecref G~QGKErBaseGxBaseGxxG~QGK
28 25 26 27 syl2anc φxBaseGY=xG~QGKxxG~QGK
29 simpr φxBaseGY=xG~QGKY=xG~QGK
30 28 29 eleqtrrd φxBaseGY=xG~QGKxY
31 29 fveq2d φxBaseGY=xG~QGKJY=JxG~QGK
32 2 ad2antrr φxBaseGY=xG~QGKFGGrpHomH
33 1 32 3 4 5 26 ghmquskerlem1 φxBaseGY=xG~QGKJxG~QGK=Fx
34 31 33 eqtrd φxBaseGY=xG~QGKJY=Fx
35 30 34 jca φxBaseGY=xG~QGKxYJY=Fx
36 35 expl φxBaseGY=xG~QGKxYJY=Fx
37 36 reximdv2 φxBaseGY=xG~QGKxYJY=Fx
38 16 37 mpd φxYJY=Fx