Metamath Proof Explorer


Theorem giccyg

Description: Cyclicity is a group property, i.e. it is preserved under isomorphism. (Contributed by Mario Carneiro, 21-Apr-2016)

Ref Expression
Assertion giccyg G𝑔HGCycGrpHCycGrp

Proof

Step Hyp Ref Expression
1 brgic G𝑔HGGrpIsoH
2 n0 GGrpIsoHffGGrpIsoH
3 gimghm fGGrpIsoHfGGrpHomH
4 eqid BaseG=BaseG
5 eqid BaseH=BaseH
6 4 5 gimf1o fGGrpIsoHf:BaseG1-1 ontoBaseH
7 f1ofo f:BaseG1-1 ontoBaseHf:BaseGontoBaseH
8 6 7 syl fGGrpIsoHf:BaseGontoBaseH
9 4 5 ghmcyg fGGrpHomHf:BaseGontoBaseHGCycGrpHCycGrp
10 3 8 9 syl2anc fGGrpIsoHGCycGrpHCycGrp
11 10 exlimiv ffGGrpIsoHGCycGrpHCycGrp
12 2 11 sylbi GGrpIsoHGCycGrpHCycGrp
13 1 12 sylbi G𝑔HGCycGrpHCycGrp