Metamath Proof Explorer


Theorem gidval

Description: The value of the identity element of a group. (Contributed by Mario Carneiro, 15-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypothesis gidval.1 X=ranG
Assertion gidval GVGIdG=ιuX|xXuGx=xxGu=x

Proof

Step Hyp Ref Expression
1 gidval.1 X=ranG
2 elex GVGV
3 rneq g=Grang=ranG
4 3 1 eqtr4di g=Grang=X
5 oveq g=Gugx=uGx
6 5 eqeq1d g=Gugx=xuGx=x
7 oveq g=Gxgu=xGu
8 7 eqeq1d g=Gxgu=xxGu=x
9 6 8 anbi12d g=Gugx=xxgu=xuGx=xxGu=x
10 4 9 raleqbidv g=Gxrangugx=xxgu=xxXuGx=xxGu=x
11 4 10 riotaeqbidv g=Gιurang|xrangugx=xxgu=x=ιuX|xXuGx=xxGu=x
12 df-gid GId=gVιurang|xrangugx=xxgu=x
13 riotaex ιuX|xXuGx=xxGu=xV
14 11 12 13 fvmpt GVGIdG=ιuX|xXuGx=xxGu=x
15 2 14 syl GVGIdG=ιuX|xXuGx=xxGu=x