Metamath Proof Explorer


Theorem gpgedgel

Description: An edge in a generalized Petersen graph G . (Contributed by AV, 29-Aug-2025)

Ref Expression
Hypotheses gpgvtxel.i I = 0 ..^ N
gpgvtxel.j J = 1 ..^ N 2
gpgvtxel.g No typesetting found for |- G = ( N gPetersenGr K ) with typecode |-
gpgedgel.e E = Edg G
Assertion gpgedgel N 3 K J Y E x I Y = 0 x 0 x + 1 mod N Y = 0 x 1 x Y = 1 x 1 x + K mod N

Proof

Step Hyp Ref Expression
1 gpgvtxel.i I = 0 ..^ N
2 gpgvtxel.j J = 1 ..^ N 2
3 gpgvtxel.g Could not format G = ( N gPetersenGr K ) : No typesetting found for |- G = ( N gPetersenGr K ) with typecode |-
4 gpgedgel.e E = Edg G
5 3 fveq2i Could not format ( Edg ` G ) = ( Edg ` ( N gPetersenGr K ) ) : No typesetting found for |- ( Edg ` G ) = ( Edg ` ( N gPetersenGr K ) ) with typecode |-
6 4 5 eqtri Could not format E = ( Edg ` ( N gPetersenGr K ) ) : No typesetting found for |- E = ( Edg ` ( N gPetersenGr K ) ) with typecode |-
7 6 eleq2i Could not format ( Y e. E <-> Y e. ( Edg ` ( N gPetersenGr K ) ) ) : No typesetting found for |- ( Y e. E <-> Y e. ( Edg ` ( N gPetersenGr K ) ) ) with typecode |-
8 eluzge3nn N 3 N
9 2 1 gpgedg Could not format ( ( N e. NN /\ K e. J ) -> ( Edg ` ( N gPetersenGr K ) ) = { e e. ~P ( { 0 , 1 } X. I ) | E. x e. I ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) } ) : No typesetting found for |- ( ( N e. NN /\ K e. J ) -> ( Edg ` ( N gPetersenGr K ) ) = { e e. ~P ( { 0 , 1 } X. I ) | E. x e. I ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) } ) with typecode |-
10 8 9 sylan Could not format ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) -> ( Edg ` ( N gPetersenGr K ) ) = { e e. ~P ( { 0 , 1 } X. I ) | E. x e. I ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) } ) : No typesetting found for |- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) -> ( Edg ` ( N gPetersenGr K ) ) = { e e. ~P ( { 0 , 1 } X. I ) | E. x e. I ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) } ) with typecode |-
11 10 eleq2d Could not format ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) -> ( Y e. ( Edg ` ( N gPetersenGr K ) ) <-> Y e. { e e. ~P ( { 0 , 1 } X. I ) | E. x e. I ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) } ) ) : No typesetting found for |- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) -> ( Y e. ( Edg ` ( N gPetersenGr K ) ) <-> Y e. { e e. ~P ( { 0 , 1 } X. I ) | E. x e. I ( e = { <. 0 , x >. , <. 0 , ( ( x + 1 ) mod N ) >. } \/ e = { <. 0 , x >. , <. 1 , x >. } \/ e = { <. 1 , x >. , <. 1 , ( ( x + K ) mod N ) >. } ) } ) ) with typecode |-
12 7 11 bitrid N 3 K J Y E Y e 𝒫 0 1 × I | x I e = 0 x 0 x + 1 mod N e = 0 x 1 x e = 1 x 1 x + K mod N
13 eqeq1 e = Y e = 0 x 0 x + 1 mod N Y = 0 x 0 x + 1 mod N
14 eqeq1 e = Y e = 0 x 1 x Y = 0 x 1 x
15 eqeq1 e = Y e = 1 x 1 x + K mod N Y = 1 x 1 x + K mod N
16 13 14 15 3orbi123d e = Y e = 0 x 0 x + 1 mod N e = 0 x 1 x e = 1 x 1 x + K mod N Y = 0 x 0 x + 1 mod N Y = 0 x 1 x Y = 1 x 1 x + K mod N
17 16 rexbidv e = Y x I e = 0 x 0 x + 1 mod N e = 0 x 1 x e = 1 x 1 x + K mod N x I Y = 0 x 0 x + 1 mod N Y = 0 x 1 x Y = 1 x 1 x + K mod N
18 17 elrab Y e 𝒫 0 1 × I | x I e = 0 x 0 x + 1 mod N e = 0 x 1 x e = 1 x 1 x + K mod N Y 𝒫 0 1 × I x I Y = 0 x 0 x + 1 mod N Y = 0 x 1 x Y = 1 x 1 x + K mod N
19 prex 0 x 0 x + 1 mod N V
20 19 a1i N 3 K J x I 0 x 0 x + 1 mod N V
21 c0ex 0 V
22 21 prid1 0 0 1
23 22 a1i N 3 K J x I 0 0 1
24 simpr N 3 K J x I x I
25 23 24 opelxpd N 3 K J x I 0 x 0 1 × I
26 elfzoelz x 0 ..^ N x
27 26 1 eleq2s x I x
28 27 adantl N 3 K J x I x
29 28 peano2zd N 3 K J x I x + 1
30 8 adantr N 3 K J N
31 30 adantr N 3 K J x I N
32 zmodfzo x + 1 N x + 1 mod N 0 ..^ N
33 29 31 32 syl2anc N 3 K J x I x + 1 mod N 0 ..^ N
34 33 1 eleqtrrdi N 3 K J x I x + 1 mod N I
35 23 34 opelxpd N 3 K J x I 0 x + 1 mod N 0 1 × I
36 25 35 prssd N 3 K J x I 0 x 0 x + 1 mod N 0 1 × I
37 20 36 elpwd N 3 K J x I 0 x 0 x + 1 mod N 𝒫 0 1 × I
38 eleq1 Y = 0 x 0 x + 1 mod N Y 𝒫 0 1 × I 0 x 0 x + 1 mod N 𝒫 0 1 × I
39 37 38 syl5ibrcom N 3 K J x I Y = 0 x 0 x + 1 mod N Y 𝒫 0 1 × I
40 prex 0 x 1 x V
41 40 a1i N 3 K J x I 0 x 1 x V
42 1ex 1 V
43 42 prid2 1 0 1
44 43 a1i N 3 K J x I 1 0 1
45 44 24 opelxpd N 3 K J x I 1 x 0 1 × I
46 25 45 prssd N 3 K J x I 0 x 1 x 0 1 × I
47 41 46 elpwd N 3 K J x I 0 x 1 x 𝒫 0 1 × I
48 eleq1 Y = 0 x 1 x Y 𝒫 0 1 × I 0 x 1 x 𝒫 0 1 × I
49 47 48 syl5ibrcom N 3 K J x I Y = 0 x 1 x Y 𝒫 0 1 × I
50 prex 1 x 1 x + K mod N V
51 50 a1i N 3 K J x I 1 x 1 x + K mod N V
52 elfzoelz K 1 ..^ N 2 K
53 52 2 eleq2s K J K
54 53 adantl N 3 K J K
55 54 adantr N 3 K J x I K
56 28 55 zaddcld N 3 K J x I x + K
57 zmodfzo x + K N x + K mod N 0 ..^ N
58 56 31 57 syl2anc N 3 K J x I x + K mod N 0 ..^ N
59 58 1 eleqtrrdi N 3 K J x I x + K mod N I
60 44 59 opelxpd N 3 K J x I 1 x + K mod N 0 1 × I
61 45 60 prssd N 3 K J x I 1 x 1 x + K mod N 0 1 × I
62 51 61 elpwd N 3 K J x I 1 x 1 x + K mod N 𝒫 0 1 × I
63 eleq1 Y = 1 x 1 x + K mod N Y 𝒫 0 1 × I 1 x 1 x + K mod N 𝒫 0 1 × I
64 62 63 syl5ibrcom N 3 K J x I Y = 1 x 1 x + K mod N Y 𝒫 0 1 × I
65 39 49 64 3jaod N 3 K J x I Y = 0 x 0 x + 1 mod N Y = 0 x 1 x Y = 1 x 1 x + K mod N Y 𝒫 0 1 × I
66 65 rexlimdva N 3 K J x I Y = 0 x 0 x + 1 mod N Y = 0 x 1 x Y = 1 x 1 x + K mod N Y 𝒫 0 1 × I
67 66 pm4.71rd N 3 K J x I Y = 0 x 0 x + 1 mod N Y = 0 x 1 x Y = 1 x 1 x + K mod N Y 𝒫 0 1 × I x I Y = 0 x 0 x + 1 mod N Y = 0 x 1 x Y = 1 x 1 x + K mod N
68 18 67 bitr4id N 3 K J Y e 𝒫 0 1 × I | x I e = 0 x 0 x + 1 mod N e = 0 x 1 x e = 1 x 1 x + K mod N x I Y = 0 x 0 x + 1 mod N Y = 0 x 1 x Y = 1 x 1 x + K mod N
69 12 68 bitrd N 3 K J Y E x I Y = 0 x 0 x + 1 mod N Y = 0 x 1 x Y = 1 x 1 x + K mod N