Metamath Proof Explorer


Theorem grp1

Description: The (smallest) structure representing atrivial group. According to Wikipedia ("Trivial group", 28-Apr-2019, https://en.wikipedia.org/wiki/Trivial_group ) "In mathematics, a trivial group is a group consisting of a single element. All such groups are isomorphic, so one often speaks ofthe trivial group. The single element of the trivial group is the identity element". (Contributed by AV, 28-Apr-2019)

Ref Expression
Hypothesis grp1.m M = Base ndx I + ndx I I I
Assertion grp1 I V M Grp

Proof

Step Hyp Ref Expression
1 grp1.m M = Base ndx I + ndx I I I
2 1 mnd1 I V M Mnd
3 df-ov I I I I I = I I I I I
4 opex I I V
5 fvsng I I V I V I I I I I = I
6 4 5 mpan I V I I I I I = I
7 3 6 syl5eq I V I I I I I = I
8 1 mnd1id I V 0 M = I
9 7 8 eqtr4d I V I I I I I = 0 M
10 oveq2 i = I e I I I i = e I I I I
11 10 eqeq1d i = I e I I I i = 0 M e I I I I = 0 M
12 11 rexbidv i = I e I e I I I i = 0 M e I e I I I I = 0 M
13 12 ralsng I V i I e I e I I I i = 0 M e I e I I I I = 0 M
14 oveq1 e = I e I I I I = I I I I I
15 14 eqeq1d e = I e I I I I = 0 M I I I I I = 0 M
16 15 rexsng I V e I e I I I I = 0 M I I I I I = 0 M
17 13 16 bitrd I V i I e I e I I I i = 0 M I I I I I = 0 M
18 9 17 mpbird I V i I e I e I I I i = 0 M
19 snex I V
20 1 grpbase I V I = Base M
21 19 20 ax-mp I = Base M
22 snex I I I V
23 1 grpplusg I I I V I I I = + M
24 22 23 ax-mp I I I = + M
25 eqid 0 M = 0 M
26 21 24 25 isgrp M Grp M Mnd i I e I e I I I i = 0 M
27 2 18 26 sylanbrc I V M Grp