Metamath Proof Explorer


Theorem grp1inv

Description: The inverse function of the trivial group. (Contributed by FL, 21-Jun-2010) (Revised by AV, 26-Aug-2021)

Ref Expression
Hypothesis grp1.m M=BasendxI+ndxIII
Assertion grp1inv IVinvgM=II

Proof

Step Hyp Ref Expression
1 grp1.m M=BasendxI+ndxIII
2 1 grp1 IVMGrp
3 snex IV
4 1 grpbase IVI=BaseM
5 3 4 ax-mp I=BaseM
6 eqid invgM=invgM
7 5 6 grpinvf MGrpinvgM:II
8 2 7 syl IVinvgM:II
9 fsng IVIVinvgM:IIinvgM=II
10 9 anidms IVinvgM:IIinvgM=II
11 simpr IVinvgM=IIinvgM=II
12 restidsing II=I×I
13 xpsng IVIVI×I=II
14 13 anidms IVI×I=II
15 12 14 eqtr2id IVII=II
16 15 adantr IVinvgM=IIII=II
17 11 16 eqtrd IVinvgM=IIinvgM=II
18 17 ex IVinvgM=IIinvgM=II
19 10 18 sylbid IVinvgM:IIinvgM=II
20 8 19 mpd IVinvgM=II