Metamath Proof Explorer


Theorem grpidinv

Description: A group has a left and right identity element, and every member has a left and right inverse. (Contributed by NM, 14-Oct-2006) (Revised by AV, 1-Sep-2021)

Ref Expression
Hypotheses grpidinv.b B=BaseG
grpidinv.p +˙=+G
Assertion grpidinv GGrpuBxBu+˙x=xx+˙u=xyBy+˙x=ux+˙y=u

Proof

Step Hyp Ref Expression
1 grpidinv.b B=BaseG
2 grpidinv.p +˙=+G
3 eqid 0G=0G
4 1 3 grpidcl GGrp0GB
5 oveq1 u=0Gu+˙x=0G+˙x
6 5 eqeq1d u=0Gu+˙x=x0G+˙x=x
7 oveq2 u=0Gx+˙u=x+˙0G
8 7 eqeq1d u=0Gx+˙u=xx+˙0G=x
9 6 8 anbi12d u=0Gu+˙x=xx+˙u=x0G+˙x=xx+˙0G=x
10 eqeq2 u=0Gy+˙x=uy+˙x=0G
11 eqeq2 u=0Gx+˙y=ux+˙y=0G
12 10 11 anbi12d u=0Gy+˙x=ux+˙y=uy+˙x=0Gx+˙y=0G
13 12 rexbidv u=0GyBy+˙x=ux+˙y=uyBy+˙x=0Gx+˙y=0G
14 9 13 anbi12d u=0Gu+˙x=xx+˙u=xyBy+˙x=ux+˙y=u0G+˙x=xx+˙0G=xyBy+˙x=0Gx+˙y=0G
15 14 ralbidv u=0GxBu+˙x=xx+˙u=xyBy+˙x=ux+˙y=uxB0G+˙x=xx+˙0G=xyBy+˙x=0Gx+˙y=0G
16 15 adantl GGrpu=0GxBu+˙x=xx+˙u=xyBy+˙x=ux+˙y=uxB0G+˙x=xx+˙0G=xyBy+˙x=0Gx+˙y=0G
17 1 2 3 grpidinv2 GGrpxB0G+˙x=xx+˙0G=xyBy+˙x=0Gx+˙y=0G
18 17 ralrimiva GGrpxB0G+˙x=xx+˙0G=xyBy+˙x=0Gx+˙y=0G
19 4 16 18 rspcedvd GGrpuBxBu+˙x=xx+˙u=xyBy+˙x=ux+˙y=u