Metamath Proof Explorer


Theorem grpidinv2

Description: A group's properties using the explicit identity element. (Contributed by NM, 5-Feb-2010) (Revised by AV, 1-Sep-2021)

Ref Expression
Hypotheses grplrinv.b B=BaseG
grplrinv.p +˙=+G
grplrinv.i 0˙=0G
Assertion grpidinv2 GGrpAB0˙+˙A=AA+˙0˙=AyBy+˙A=0˙A+˙y=0˙

Proof

Step Hyp Ref Expression
1 grplrinv.b B=BaseG
2 grplrinv.p +˙=+G
3 grplrinv.i 0˙=0G
4 1 2 3 grplid GGrpAB0˙+˙A=A
5 1 2 3 grprid GGrpABA+˙0˙=A
6 1 2 3 grplrinv GGrpzByBy+˙z=0˙z+˙y=0˙
7 oveq2 z=Ay+˙z=y+˙A
8 7 eqeq1d z=Ay+˙z=0˙y+˙A=0˙
9 oveq1 z=Az+˙y=A+˙y
10 9 eqeq1d z=Az+˙y=0˙A+˙y=0˙
11 8 10 anbi12d z=Ay+˙z=0˙z+˙y=0˙y+˙A=0˙A+˙y=0˙
12 11 rexbidv z=AyBy+˙z=0˙z+˙y=0˙yBy+˙A=0˙A+˙y=0˙
13 12 rspcv ABzByBy+˙z=0˙z+˙y=0˙yBy+˙A=0˙A+˙y=0˙
14 6 13 mpan9 GGrpAByBy+˙A=0˙A+˙y=0˙
15 4 5 14 jca31 GGrpAB0˙+˙A=AA+˙0˙=AyBy+˙A=0˙A+˙y=0˙