Metamath Proof Explorer


Theorem grpinvex

Description: Every member of a group has a left inverse. (Contributed by NM, 16-Aug-2011) (Revised by Mario Carneiro, 6-Jan-2015)

Ref Expression
Hypotheses grpcl.b B=BaseG
grpcl.p +˙=+G
grpinvex.p 0˙=0G
Assertion grpinvex GGrpXByBy+˙X=0˙

Proof

Step Hyp Ref Expression
1 grpcl.b B=BaseG
2 grpcl.p +˙=+G
3 grpinvex.p 0˙=0G
4 1 2 3 isgrp GGrpGMndxByBy+˙x=0˙
5 4 simprbi GGrpxByBy+˙x=0˙
6 oveq2 x=Xy+˙x=y+˙X
7 6 eqeq1d x=Xy+˙x=0˙y+˙X=0˙
8 7 rexbidv x=XyBy+˙x=0˙yBy+˙X=0˙
9 8 rspccva xByBy+˙x=0˙XByBy+˙X=0˙
10 5 9 sylan GGrpXByBy+˙X=0˙