Metamath Proof Explorer


Theorem grpinvinv

Description: Double inverse law for groups. Lemma 2.2.1(c) of Herstein p. 55. (Contributed by NM, 31-Mar-2014)

Ref Expression
Hypotheses grpinvinv.b B=BaseG
grpinvinv.n N=invgG
Assertion grpinvinv GGrpXBNNX=X

Proof

Step Hyp Ref Expression
1 grpinvinv.b B=BaseG
2 grpinvinv.n N=invgG
3 1 2 grpinvcl GGrpXBNXB
4 eqid +G=+G
5 eqid 0G=0G
6 1 4 5 2 grprinv GGrpNXBNX+GNNX=0G
7 3 6 syldan GGrpXBNX+GNNX=0G
8 1 4 5 2 grplinv GGrpXBNX+GX=0G
9 7 8 eqtr4d GGrpXBNX+GNNX=NX+GX
10 simpl GGrpXBGGrp
11 1 2 grpinvcl GGrpNXBNNXB
12 3 11 syldan GGrpXBNNXB
13 simpr GGrpXBXB
14 1 4 grplcan GGrpNNXBXBNXBNX+GNNX=NX+GXNNX=X
15 10 12 13 3 14 syl13anc GGrpXBNX+GNNX=NX+GXNNX=X
16 9 15 mpbid GGrpXBNNX=X