Metamath Proof Explorer


Theorem grpinvinv

Description: Double inverse law for groups. Lemma 2.2.1(c) of Herstein p. 55. (Contributed by NM, 31-Mar-2014)

Ref Expression
Hypotheses grpinvinv.b B = Base G
grpinvinv.n N = inv g G
Assertion grpinvinv G Grp X B N N X = X

Proof

Step Hyp Ref Expression
1 grpinvinv.b B = Base G
2 grpinvinv.n N = inv g G
3 1 2 grpinvcl G Grp X B N X B
4 eqid + G = + G
5 eqid 0 G = 0 G
6 1 4 5 2 grprinv G Grp N X B N X + G N N X = 0 G
7 3 6 syldan G Grp X B N X + G N N X = 0 G
8 1 4 5 2 grplinv G Grp X B N X + G X = 0 G
9 7 8 eqtr4d G Grp X B N X + G N N X = N X + G X
10 simpl G Grp X B G Grp
11 1 2 grpinvcl G Grp N X B N N X B
12 3 11 syldan G Grp X B N N X B
13 simpr G Grp X B X B
14 1 4 grplcan G Grp N N X B X B N X B N X + G N N X = N X + G X N N X = X
15 10 12 13 3 14 syl13anc G Grp X B N X + G N N X = N X + G X N N X = X
16 9 15 mpbid G Grp X B N N X = X