Metamath Proof Explorer


Theorem grpinvnz

Description: The inverse of a nonzero group element is not zero. (Contributed by Stefan O'Rear, 27-Feb-2015)

Ref Expression
Hypotheses grpinvnzcl.b B=BaseG
grpinvnzcl.z 0˙=0G
grpinvnzcl.n N=invgG
Assertion grpinvnz GGrpXBX0˙NX0˙

Proof

Step Hyp Ref Expression
1 grpinvnzcl.b B=BaseG
2 grpinvnzcl.z 0˙=0G
3 grpinvnzcl.n N=invgG
4 fveq2 NX=0˙NNX=N0˙
5 4 adantl GGrpXBNX=0˙NNX=N0˙
6 1 3 grpinvinv GGrpXBNNX=X
7 6 adantr GGrpXBNX=0˙NNX=X
8 2 3 grpinvid GGrpN0˙=0˙
9 8 ad2antrr GGrpXBNX=0˙N0˙=0˙
10 5 7 9 3eqtr3d GGrpXBNX=0˙X=0˙
11 10 ex GGrpXBNX=0˙X=0˙
12 11 necon3d GGrpXBX0˙NX0˙
13 12 3impia GGrpXBX0˙NX0˙