Description: The inverse of a nonzero group element is not zero. (Contributed by Stefan O'Rear, 27-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | grpinvnzcl.b | |
|
grpinvnzcl.z | |
||
grpinvnzcl.n | |
||
Assertion | grpinvnz | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpinvnzcl.b | |
|
2 | grpinvnzcl.z | |
|
3 | grpinvnzcl.n | |
|
4 | fveq2 | |
|
5 | 4 | adantl | |
6 | 1 3 | grpinvinv | |
7 | 6 | adantr | |
8 | 2 3 | grpinvid | |
9 | 8 | ad2antrr | |
10 | 5 7 9 | 3eqtr3d | |
11 | 10 | ex | |
12 | 11 | necon3d | |
13 | 12 | 3impia | |