Metamath Proof Explorer


Theorem grpnpcan

Description: Cancellation law for subtraction ( npcan analog). (Contributed by NM, 19-Apr-2014)

Ref Expression
Hypotheses grpsubadd.b B=BaseG
grpsubadd.p +˙=+G
grpsubadd.m -˙=-G
Assertion grpnpcan GGrpXBYBX-˙Y+˙Y=X

Proof

Step Hyp Ref Expression
1 grpsubadd.b B=BaseG
2 grpsubadd.p +˙=+G
3 grpsubadd.m -˙=-G
4 eqid invgG=invgG
5 1 4 grpinvcl GGrpYBinvgGYB
6 5 3adant2 GGrpXBYBinvgGYB
7 1 2 grpcl GGrpXBinvgGYBX+˙invgGYB
8 6 7 syld3an3 GGrpXBYBX+˙invgGYB
9 1 2 4 3 grpsubval X+˙invgGYBinvgGYBX+˙invgGY-˙invgGY=X+˙invgGY+˙invgGinvgGY
10 8 6 9 syl2anc GGrpXBYBX+˙invgGY-˙invgGY=X+˙invgGY+˙invgGinvgGY
11 1 2 3 grppncan GGrpXBinvgGYBX+˙invgGY-˙invgGY=X
12 6 11 syld3an3 GGrpXBYBX+˙invgGY-˙invgGY=X
13 1 2 4 3 grpsubval XBYBX-˙Y=X+˙invgGY
14 13 3adant1 GGrpXBYBX-˙Y=X+˙invgGY
15 14 eqcomd GGrpXBYBX+˙invgGY=X-˙Y
16 1 4 grpinvinv GGrpYBinvgGinvgGY=Y
17 16 3adant2 GGrpXBYBinvgGinvgGY=Y
18 15 17 oveq12d GGrpXBYBX+˙invgGY+˙invgGinvgGY=X-˙Y+˙Y
19 10 12 18 3eqtr3rd GGrpXBYBX-˙Y+˙Y=X