Metamath Proof Explorer


Theorem grposnOLD

Description: The group operation for the singleton group. Obsolete, use grp1 . instead. (Contributed by NM, 4-Nov-2006) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypothesis grposnOLD.1 AV
Assertion grposnOLD AAAGrpOp

Proof

Step Hyp Ref Expression
1 grposnOLD.1 AV
2 snex AV
3 opex AAV
4 3 1 f1osn AAA:AA1-1 ontoA
5 f1of AAA:AA1-1 ontoAAAA:AAA
6 4 5 ax-mp AAA:AAA
7 1 1 xpsn A×A=AA
8 7 feq2i AAA:A×AAAAA:AAA
9 6 8 mpbir AAA:A×AA
10 velsn xAx=A
11 velsn yAy=A
12 velsn zAz=A
13 oveq2 z=AxAAAyAAAz=xAAAyAAAA
14 oveq1 x=AxAAAy=AAAAy
15 oveq2 y=AAAAAy=AAAAA
16 df-ov AAAAA=AAAAA
17 3 1 fvsn AAAAA=A
18 16 17 eqtri AAAAA=A
19 15 18 eqtrdi y=AAAAAy=A
20 14 19 sylan9eq x=Ay=AxAAAy=A
21 20 oveq1d x=Ay=AxAAAyAAAA=AAAAA
22 21 18 eqtrdi x=Ay=AxAAAyAAAA=A
23 13 22 sylan9eqr x=Ay=Az=AxAAAyAAAz=A
24 23 3impa x=Ay=Az=AxAAAyAAAz=A
25 oveq1 x=AxAAAyAAAz=AAAAyAAAz
26 oveq1 y=AyAAAz=AAAAz
27 oveq2 z=AAAAAz=AAAAA
28 27 18 eqtrdi z=AAAAAz=A
29 26 28 sylan9eq y=Az=AyAAAz=A
30 29 oveq2d y=Az=AAAAAyAAAz=AAAAA
31 30 18 eqtrdi y=Az=AAAAAyAAAz=A
32 25 31 sylan9eq x=Ay=Az=AxAAAyAAAz=A
33 32 3impb x=Ay=Az=AxAAAyAAAz=A
34 24 33 eqtr4d x=Ay=Az=AxAAAyAAAz=xAAAyAAAz
35 10 11 12 34 syl3anb xAyAzAxAAAyAAAz=xAAAyAAAz
36 1 snid AA
37 oveq2 x=AAAAAx=AAAAA
38 37 18 eqtrdi x=AAAAAx=A
39 id x=Ax=A
40 38 39 eqtr4d x=AAAAAx=x
41 10 40 sylbi xAAAAAx=x
42 36 a1i xAAA
43 10 38 sylbi xAAAAAx=A
44 2 9 35 36 41 42 43 isgrpoi AAAGrpOp