Description: All morphisms in a category converted from a group are epimorphisms. (Contributed by Zhi Wang, 23-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | grptcmon.c | No typesetting found for |- ( ph -> C = ( MndToCat ` G ) ) with typecode |- | |
grptcmon.g | |
||
grptcmon.b | |
||
grptcmon.x | |
||
grptcmon.y | |
||
grptcmon.h | |
||
grptcepi.e | |
||
Assertion | grptcepi | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grptcmon.c | Could not format ( ph -> C = ( MndToCat ` G ) ) : No typesetting found for |- ( ph -> C = ( MndToCat ` G ) ) with typecode |- | |
2 | grptcmon.g | |
|
3 | grptcmon.b | |
|
4 | grptcmon.x | |
|
5 | grptcmon.y | |
|
6 | grptcmon.h | |
|
7 | grptcepi.e | |
|
8 | eqid | |
|
9 | eqid | |
|
10 | eqid | |
|
11 | eqid | |
|
12 | 2 | grpmndd | |
13 | 1 12 | mndtccat | |
14 | 4 3 | eleqtrd | |
15 | 5 3 | eleqtrd | |
16 | 8 9 10 11 13 14 15 | isepi2 | |
17 | 1 | ad2antrr | Could not format ( ( ( ph /\ f e. ( X ( Hom ` C ) Y ) ) /\ ( z e. ( Base ` C ) /\ g e. ( Y ( Hom ` C ) z ) /\ h e. ( Y ( Hom ` C ) z ) ) ) -> C = ( MndToCat ` G ) ) : No typesetting found for |- ( ( ( ph /\ f e. ( X ( Hom ` C ) Y ) ) /\ ( z e. ( Base ` C ) /\ g e. ( Y ( Hom ` C ) z ) /\ h e. ( Y ( Hom ` C ) z ) ) ) -> C = ( MndToCat ` G ) ) with typecode |- |
18 | 12 | ad2antrr | |
19 | 3 | ad2antrr | |
20 | 4 | ad2antrr | |
21 | 5 | ad2antrr | |
22 | simpr1 | |
|
23 | 22 19 | eleqtrrd | |
24 | eqidd | |
|
25 | eqidd | |
|
26 | 17 18 19 20 21 23 24 25 | mndtcco2 | |
27 | 17 18 19 20 21 23 24 25 | mndtcco2 | |
28 | 26 27 | eqeq12d | |
29 | 2 | ad2antrr | |
30 | simpr2 | |
|
31 | eqidd | |
|
32 | 17 18 19 21 23 31 | mndtchom | |
33 | 30 32 | eleqtrd | |
34 | simpr3 | |
|
35 | 34 32 | eleqtrd | |
36 | simplr | |
|
37 | 17 18 19 20 21 31 | mndtchom | |
38 | 36 37 | eleqtrd | |
39 | eqid | |
|
40 | eqid | |
|
41 | 39 40 | grprcan | |
42 | 29 33 35 38 41 | syl13anc | |
43 | 28 42 | bitrd | |
44 | 43 | biimpd | |
45 | 44 | ralrimivvva | |
46 | 16 45 | mpbiran3d | |
47 | 46 | eqrdv | |
48 | 7 | oveqd | |
49 | 6 | oveqd | |
50 | 47 48 49 | 3eqtr4d | |