Metamath Proof Explorer


Theorem grptcepi

Description: All morphisms in a category converted from a group are epimorphisms. (Contributed by Zhi Wang, 23-Sep-2024)

Ref Expression
Hypotheses grptcmon.c No typesetting found for |- ( ph -> C = ( MndToCat ` G ) ) with typecode |-
grptcmon.g φGGrp
grptcmon.b φB=BaseC
grptcmon.x φXB
grptcmon.y φYB
grptcmon.h φH=HomC
grptcepi.e φE=EpiC
Assertion grptcepi φXEY=XHY

Proof

Step Hyp Ref Expression
1 grptcmon.c Could not format ( ph -> C = ( MndToCat ` G ) ) : No typesetting found for |- ( ph -> C = ( MndToCat ` G ) ) with typecode |-
2 grptcmon.g φGGrp
3 grptcmon.b φB=BaseC
4 grptcmon.x φXB
5 grptcmon.y φYB
6 grptcmon.h φH=HomC
7 grptcepi.e φE=EpiC
8 eqid BaseC=BaseC
9 eqid HomC=HomC
10 eqid compC=compC
11 eqid EpiC=EpiC
12 2 grpmndd φGMnd
13 1 12 mndtccat φCCat
14 4 3 eleqtrd φXBaseC
15 5 3 eleqtrd φYBaseC
16 8 9 10 11 13 14 15 isepi2 φfXEpiCYfXHomCYzBaseCgYHomCzhYHomCzgXYcompCzf=hXYcompCzfg=h
17 1 ad2antrr Could not format ( ( ( ph /\ f e. ( X ( Hom ` C ) Y ) ) /\ ( z e. ( Base ` C ) /\ g e. ( Y ( Hom ` C ) z ) /\ h e. ( Y ( Hom ` C ) z ) ) ) -> C = ( MndToCat ` G ) ) : No typesetting found for |- ( ( ( ph /\ f e. ( X ( Hom ` C ) Y ) ) /\ ( z e. ( Base ` C ) /\ g e. ( Y ( Hom ` C ) z ) /\ h e. ( Y ( Hom ` C ) z ) ) ) -> C = ( MndToCat ` G ) ) with typecode |-
18 12 ad2antrr φfXHomCYzBaseCgYHomCzhYHomCzGMnd
19 3 ad2antrr φfXHomCYzBaseCgYHomCzhYHomCzB=BaseC
20 4 ad2antrr φfXHomCYzBaseCgYHomCzhYHomCzXB
21 5 ad2antrr φfXHomCYzBaseCgYHomCzhYHomCzYB
22 simpr1 φfXHomCYzBaseCgYHomCzhYHomCzzBaseC
23 22 19 eleqtrrd φfXHomCYzBaseCgYHomCzhYHomCzzB
24 eqidd φfXHomCYzBaseCgYHomCzhYHomCzcompC=compC
25 eqidd φfXHomCYzBaseCgYHomCzhYHomCzXYcompCz=XYcompCz
26 17 18 19 20 21 23 24 25 mndtcco2 φfXHomCYzBaseCgYHomCzhYHomCzgXYcompCzf=g+Gf
27 17 18 19 20 21 23 24 25 mndtcco2 φfXHomCYzBaseCgYHomCzhYHomCzhXYcompCzf=h+Gf
28 26 27 eqeq12d φfXHomCYzBaseCgYHomCzhYHomCzgXYcompCzf=hXYcompCzfg+Gf=h+Gf
29 2 ad2antrr φfXHomCYzBaseCgYHomCzhYHomCzGGrp
30 simpr2 φfXHomCYzBaseCgYHomCzhYHomCzgYHomCz
31 eqidd φfXHomCYzBaseCgYHomCzhYHomCzHomC=HomC
32 17 18 19 21 23 31 mndtchom φfXHomCYzBaseCgYHomCzhYHomCzYHomCz=BaseG
33 30 32 eleqtrd φfXHomCYzBaseCgYHomCzhYHomCzgBaseG
34 simpr3 φfXHomCYzBaseCgYHomCzhYHomCzhYHomCz
35 34 32 eleqtrd φfXHomCYzBaseCgYHomCzhYHomCzhBaseG
36 simplr φfXHomCYzBaseCgYHomCzhYHomCzfXHomCY
37 17 18 19 20 21 31 mndtchom φfXHomCYzBaseCgYHomCzhYHomCzXHomCY=BaseG
38 36 37 eleqtrd φfXHomCYzBaseCgYHomCzhYHomCzfBaseG
39 eqid BaseG=BaseG
40 eqid +G=+G
41 39 40 grprcan GGrpgBaseGhBaseGfBaseGg+Gf=h+Gfg=h
42 29 33 35 38 41 syl13anc φfXHomCYzBaseCgYHomCzhYHomCzg+Gf=h+Gfg=h
43 28 42 bitrd φfXHomCYzBaseCgYHomCzhYHomCzgXYcompCzf=hXYcompCzfg=h
44 43 biimpd φfXHomCYzBaseCgYHomCzhYHomCzgXYcompCzf=hXYcompCzfg=h
45 44 ralrimivvva φfXHomCYzBaseCgYHomCzhYHomCzgXYcompCzf=hXYcompCzfg=h
46 16 45 mpbiran3d φfXEpiCYfXHomCY
47 46 eqrdv φXEpiCY=XHomCY
48 7 oveqd φXEY=XEpiCY
49 6 oveqd φXHY=XHomCY
50 47 48 49 3eqtr4d φXEY=XHY