Metamath Proof Explorer


Theorem gruun

Description: A Grothendieck universe contains binary unions of its elements. (Contributed by Mario Carneiro, 9-Jun-2013)

Ref Expression
Assertion gruun UUnivAUBUABU

Proof

Step Hyp Ref Expression
1 uniprg AUBUAB=AB
2 1 3adant1 UUnivAUBUAB=AB
3 uniiun AB=xABx
4 2 3 eqtr3di UUnivAUBUAB=xABx
5 simp1 UUnivAUBUUUniv
6 grupr UUnivAUBUABU
7 vex xV
8 7 elpr xABx=Ax=B
9 eleq1a AUx=AxU
10 eleq1a BUx=BxU
11 9 10 jaao AUBUx=Ax=BxU
12 8 11 biimtrid AUBUxABxU
13 12 ralrimiv AUBUxABxU
14 13 3adant1 UUnivAUBUxABxU
15 gruiun UUnivABUxABxUxABxU
16 5 6 14 15 syl3anc UUnivAUBUxABxU
17 4 16 eqeltrd UUnivAUBUABU