Metamath Proof Explorer


Theorem gsumcllem

Description: Lemma for gsumcl and related theorems. (Contributed by Mario Carneiro, 15-Dec-2014) (Revised by Mario Carneiro, 24-Apr-2016) (Revised by AV, 31-May-2019)

Ref Expression
Hypotheses gsumcllem.f φF:AB
gsumcllem.a φAV
gsumcllem.z φZU
gsumcllem.s φFsuppZW
Assertion gsumcllem φW=F=kAZ

Proof

Step Hyp Ref Expression
1 gsumcllem.f φF:AB
2 gsumcllem.a φAV
3 gsumcllem.z φZU
4 gsumcllem.s φFsuppZW
5 1 feqmptd φF=kAFk
6 5 adantr φW=F=kAFk
7 difeq2 W=AW=A
8 dif0 A=A
9 7 8 eqtrdi W=AW=A
10 9 eleq2d W=kAWkA
11 10 biimpar W=kAkAW
12 1 4 2 3 suppssr φkAWFk=Z
13 11 12 sylan2 φW=kAFk=Z
14 13 anassrs φW=kAFk=Z
15 14 mpteq2dva φW=kAFk=kAZ
16 6 15 eqtrd φW=F=kAZ