Metamath Proof Explorer


Theorem gsummptfif1o

Description: Re-index a finite group sum as map, using a bijection. (Contributed by by AV, 23-Jul-2019)

Ref Expression
Hypotheses gsummptcl.b B=BaseG
gsummptcl.g φGCMnd
gsummptcl.n φNFin
gsummptcl.e φiNXB
gsummptfif1o.f F=iNX
gsummptfif1o.h φH:C1-1 ontoN
Assertion gsummptfif1o φGF=GFH

Proof

Step Hyp Ref Expression
1 gsummptcl.b B=BaseG
2 gsummptcl.g φGCMnd
3 gsummptcl.n φNFin
4 gsummptcl.e φiNXB
5 gsummptfif1o.f F=iNX
6 gsummptfif1o.h φH:C1-1 ontoN
7 eqid 0G=0G
8 5 fmpt iNXBF:NB
9 4 8 sylib φF:NB
10 fvexd φ0GV
11 9 3 10 fdmfifsupp φfinSupp0GF
12 1 7 2 3 9 11 6 gsumf1o φGF=GFH