Metamath Proof Explorer


Theorem gsummptif1n0

Description: If only one summand in a finite group sum is not zero, the whole sum equals this summand. (Contributed by AV, 17-Feb-2019) (Proof shortened by AV, 11-Oct-2019)

Ref Expression
Hypotheses gsummpt1n0.0 0˙=0G
gsummpt1n0.g φGMnd
gsummpt1n0.i φIW
gsummpt1n0.x φXI
gsummpt1n0.f F=nIifn=XA0˙
gsummptif1n0.a φABaseG
Assertion gsummptif1n0 φGF=A

Proof

Step Hyp Ref Expression
1 gsummpt1n0.0 0˙=0G
2 gsummpt1n0.g φGMnd
3 gsummpt1n0.i φIW
4 gsummpt1n0.x φXI
5 gsummpt1n0.f F=nIifn=XA0˙
6 gsummptif1n0.a φABaseG
7 6 ralrimivw φnIABaseG
8 1 2 3 4 5 7 gsummpt1n0 φGF=X/nA
9 csbconstg XIX/nA=A
10 4 9 syl φX/nA=A
11 8 10 eqtrd φGF=A