Metamath Proof Explorer


Theorem gsummulc1OLD

Description: Obsolete version of gsummulc1 as of 7-Mar-2025. (Contributed by Mario Carneiro, 19-Dec-2014) (Revised by AV, 10-Jul-2019) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses gsummulc1OLD.b B=BaseR
gsummulc1OLD.z 0˙=0R
gsummulc1OLD.p +˙=+R
gsummulc1OLD.t ·˙=R
gsummulc1OLD.r φRRing
gsummulc1OLD.a φAV
gsummulc1OLD.y φYB
gsummulc1OLD.x φkAXB
gsummulc1OLD.n φfinSupp0˙kAX
Assertion gsummulc1OLD φRkAX·˙Y=RkAX·˙Y

Proof

Step Hyp Ref Expression
1 gsummulc1OLD.b B=BaseR
2 gsummulc1OLD.z 0˙=0R
3 gsummulc1OLD.p +˙=+R
4 gsummulc1OLD.t ·˙=R
5 gsummulc1OLD.r φRRing
6 gsummulc1OLD.a φAV
7 gsummulc1OLD.y φYB
8 gsummulc1OLD.x φkAXB
9 gsummulc1OLD.n φfinSupp0˙kAX
10 ringcmn RRingRCMnd
11 5 10 syl φRCMnd
12 ringmnd RRingRMnd
13 5 12 syl φRMnd
14 1 4 ringrghm RRingYBxBx·˙YRGrpHomR
15 5 7 14 syl2anc φxBx·˙YRGrpHomR
16 ghmmhm xBx·˙YRGrpHomRxBx·˙YRMndHomR
17 15 16 syl φxBx·˙YRMndHomR
18 oveq1 x=Xx·˙Y=X·˙Y
19 oveq1 x=RkAXx·˙Y=RkAX·˙Y
20 1 2 11 13 6 17 8 9 18 19 gsummhm2 φRkAX·˙Y=RkAX·˙Y