Metamath Proof Explorer


Theorem gsummulc2OLD

Description: Obsolete version of gsummulc2 as of 7-Mar-2025. (Contributed by Mario Carneiro, 19-Dec-2014) (Revised by AV, 10-Jul-2019) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses gsummulc1OLD.b B=BaseR
gsummulc1OLD.z 0˙=0R
gsummulc1OLD.p +˙=+R
gsummulc1OLD.t ·˙=R
gsummulc1OLD.r φRRing
gsummulc1OLD.a φAV
gsummulc1OLD.y φYB
gsummulc1OLD.x φkAXB
gsummulc1OLD.n φfinSupp0˙kAX
Assertion gsummulc2OLD φRkAY·˙X=Y·˙RkAX

Proof

Step Hyp Ref Expression
1 gsummulc1OLD.b B=BaseR
2 gsummulc1OLD.z 0˙=0R
3 gsummulc1OLD.p +˙=+R
4 gsummulc1OLD.t ·˙=R
5 gsummulc1OLD.r φRRing
6 gsummulc1OLD.a φAV
7 gsummulc1OLD.y φYB
8 gsummulc1OLD.x φkAXB
9 gsummulc1OLD.n φfinSupp0˙kAX
10 ringcmn RRingRCMnd
11 5 10 syl φRCMnd
12 ringmnd RRingRMnd
13 5 12 syl φRMnd
14 1 4 ringlghm RRingYBxBY·˙xRGrpHomR
15 5 7 14 syl2anc φxBY·˙xRGrpHomR
16 ghmmhm xBY·˙xRGrpHomRxBY·˙xRMndHomR
17 15 16 syl φxBY·˙xRMndHomR
18 oveq2 x=XY·˙x=Y·˙X
19 oveq2 x=RkAXY·˙x=Y·˙RkAX
20 1 2 11 13 6 17 8 9 18 19 gsummhm2 φRkAY·˙X=Y·˙RkAX