Metamath Proof Explorer


Theorem h2hmetdval

Description: Value of the distance function of the metric space of Hilbert space. (Contributed by NM, 6-Jun-2008) (New usage is discouraged.)

Ref Expression
Hypotheses h2h.1 U=+norm
h2h.2 UNrmCVec
h2hm.4 =BaseSetU
h2hm.5 D=IndMetU
Assertion h2hmetdval ABADB=normA-B

Proof

Step Hyp Ref Expression
1 h2h.1 U=+norm
2 h2h.2 UNrmCVec
3 h2hm.4 =BaseSetU
4 h2hm.5 D=IndMetU
5 1 2 3 h2hvs -=-vU
6 1 2 h2hnm norm=normCVU
7 3 5 6 4 imsdval UNrmCVecABADB=normA-B
8 2 7 mp3an1 ABADB=normA-B