Metamath Proof Explorer


Theorem hasheni

Description: Equinumerous sets have the same number of elements (even if they are not finite). (Contributed by Mario Carneiro, 15-Apr-2015)

Ref Expression
Assertion hasheni ABA=B

Proof

Step Hyp Ref Expression
1 simpl ABBFinAB
2 enfii BFinABAFin
3 2 ancoms ABBFinAFin
4 hashen AFinBFinA=BAB
5 3 4 sylancom ABBFinA=BAB
6 1 5 mpbird ABBFinA=B
7 relen Rel
8 7 brrelex1i ABAV
9 enfi ABAFinBFin
10 9 notbid AB¬AFin¬BFin
11 10 biimpar AB¬BFin¬AFin
12 hashinf AV¬AFinA=+∞
13 8 11 12 syl2an2r AB¬BFinA=+∞
14 7 brrelex2i ABBV
15 hashinf BV¬BFinB=+∞
16 14 15 sylan AB¬BFinB=+∞
17 13 16 eqtr4d AB¬BFinA=B
18 6 17 pm2.61dan ABA=B