Metamath Proof Explorer


Theorem hashfn

Description: A function is equinumerous to its domain. (Contributed by Mario Carneiro, 12-Mar-2015)

Ref Expression
Assertion hashfn FFnAF=A

Proof

Step Hyp Ref Expression
1 fndmeng FFnAAVAF
2 ensym AFFA
3 hasheni FAF=A
4 1 2 3 3syl FFnAAVF=A
5 dmexg FVdomFV
6 fndm FFnAdomF=A
7 6 eleq1d FFnAdomFVAV
8 5 7 imbitrid FFnAFVAV
9 8 con3dimp FFnA¬AV¬FV
10 fvprc ¬FVF=
11 9 10 syl FFnA¬AVF=
12 fvprc ¬AVA=
13 12 adantl FFnA¬AVA=
14 11 13 eqtr4d FFnA¬AVF=A
15 4 14 pm2.61dan FFnAF=A