Metamath Proof Explorer


Theorem hashgt1

Description: Restate "set contains at least two elements" in terms of elementhood. (Contributed by Thierry Arnoux, 21-Nov-2023)

Ref Expression
Assertion hashgt1 AV¬A.-1011<A

Proof

Step Hyp Ref Expression
1 hashf .:V0+∞
2 ffn .:V0+∞.FnV
3 elpreima .FnVA.-101AVA01
4 1 2 3 mp2b A.-101AVA01
5 elex AVAV
6 5 biantrurd AVA01AVA01
7 4 6 bitr4id AVA.-101A01
8 7 notbid AV¬A.-101¬A01
9 hashxnn0 AVA0*
10 xnn01gt A0*¬A011<A
11 9 10 syl AV¬A011<A
12 8 11 bitrd AV¬A.-1011<A