Metamath Proof Explorer


Theorem hashle2prv

Description: A nonempty subset of a powerset of a class V has size less than or equal to two iff it is an unordered pair of elements of V . (Contributed by AV, 24-Nov-2021)

Ref Expression
Assertion hashle2prv P𝒫VP2aVbVP=ab

Proof

Step Hyp Ref Expression
1 eldifsn P𝒫VP𝒫VP
2 hashle2pr P𝒫VPP2abP=ab
3 1 2 sylbi P𝒫VP2abP=ab
4 eldifi P𝒫VP𝒫V
5 eleq1 P=abP𝒫Vab𝒫V
6 prelpw aVbVaVbVab𝒫V
7 6 biimprd aVbVab𝒫VaVbV
8 7 el2v ab𝒫VaVbV
9 5 8 syl6bi P=abP𝒫VaVbV
10 4 9 syl5com P𝒫VP=abaVbV
11 10 pm4.71rd P𝒫VP=abaVbVP=ab
12 11 2exbidv P𝒫VabP=ababaVbVP=ab
13 r2ex aVbVP=ababaVbVP=ab
14 13 bicomi abaVbVP=abaVbVP=ab
15 14 a1i P𝒫VabaVbVP=abaVbVP=ab
16 3 12 15 3bitrd P𝒫VP2aVbVP=ab