Metamath Proof Explorer


Theorem hashle2pr

Description: A nonempty set of size less than or equal to two is an unordered pair of sets. (Contributed by AV, 24-Nov-2021)

Ref Expression
Assertion hashle2pr P V P P 2 a b P = a b

Proof

Step Hyp Ref Expression
1 hashxnn0 P V P 0 *
2 xnn0le2is012 P 0 * P 2 P = 0 P = 1 P = 2
3 1 2 sylan P V P 2 P = 0 P = 1 P = 2
4 3 ex P V P 2 P = 0 P = 1 P = 2
5 hasheq0 P V P = 0 P =
6 eqneqall P = P a b P = a b
7 5 6 syl6bi P V P = 0 P a b P = a b
8 7 com12 P = 0 P V P a b P = a b
9 hash1snb P V P = 1 c P = c
10 vex c V
11 preq12 a = c b = c a b = c c
12 dfsn2 c = c c
13 11 12 eqtr4di a = c b = c a b = c
14 13 eqeq2d a = c b = c P = a b P = c
15 10 10 14 spc2ev P = c a b P = a b
16 15 exlimiv c P = c a b P = a b
17 9 16 syl6bi P V P = 1 a b P = a b
18 17 imp P V P = 1 a b P = a b
19 18 a1d P V P = 1 P a b P = a b
20 19 expcom P = 1 P V P a b P = a b
21 hash2pr P V P = 2 a b P = a b
22 21 a1d P V P = 2 P a b P = a b
23 22 expcom P = 2 P V P a b P = a b
24 8 20 23 3jaoi P = 0 P = 1 P = 2 P V P a b P = a b
25 24 com12 P V P = 0 P = 1 P = 2 P a b P = a b
26 4 25 syld P V P 2 P a b P = a b
27 26 com23 P V P P 2 a b P = a b
28 27 imp P V P P 2 a b P = a b
29 fveq2 P = a b P = a b
30 hashprlei a b Fin a b 2
31 30 simpri a b 2
32 29 31 eqbrtrdi P = a b P 2
33 32 exlimivv a b P = a b P 2
34 28 33 impbid1 P V P P 2 a b P = a b