Metamath Proof Explorer


Theorem hashrabsn01

Description: The size of a restricted class abstraction restricted to a singleton is either 0 or 1. (Contributed by Alexander van der Vekens, 3-Sep-2018)

Ref Expression
Assertion hashrabsn01 xA|φ=NN=0N=1

Proof

Step Hyp Ref Expression
1 eqid xA|φ=xA|φ
2 rabrsn xA|φ=xA|φxA|φ=xA|φ=A
3 fveqeq2 xA|φ=xA|φ=N=N
4 eqcom =NN=
5 4 biimpi =NN=
6 hash0 =0
7 5 6 eqtrdi =NN=0
8 7 orcd =NN=0N=1
9 3 8 syl6bi xA|φ=xA|φ=NN=0N=1
10 fveqeq2 xA|φ=AxA|φ=NA=N
11 eqcom A=NN=A
12 11 biimpi A=NN=A
13 hashsng AVA=1
14 12 13 sylan9eqr AVA=NN=1
15 14 olcd AVA=NN=0N=1
16 15 ex AVA=NN=0N=1
17 snprc ¬AVA=
18 fveqeq2 A=A=N=N
19 18 8 syl6bi A=A=NN=0N=1
20 17 19 sylbi ¬AVA=NN=0N=1
21 16 20 pm2.61i A=NN=0N=1
22 10 21 syl6bi xA|φ=AxA|φ=NN=0N=1
23 9 22 jaoi xA|φ=xA|φ=AxA|φ=NN=0N=1
24 1 2 23 mp2b xA|φ=NN=0N=1