Metamath Proof Explorer


Theorem hashrabsn1

Description: If the size of a restricted class abstraction restricted to a singleton is 1, the condition of the class abstraction must hold for the singleton. (Contributed by Alexander van der Vekens, 3-Sep-2018)

Ref Expression
Assertion hashrabsn1 x A | φ = 1 [˙A / x]˙ φ

Proof

Step Hyp Ref Expression
1 eqid x A | φ = x A | φ
2 rabrsn x A | φ = x A | φ x A | φ = x A | φ = A
3 fveqeq2 x A | φ = x A | φ = 1 = 1
4 hash0 = 0
5 4 eqeq1i = 1 0 = 1
6 0ne1 0 1
7 eqneqall 0 = 1 0 1 [˙A / x]˙ φ
8 6 7 mpi 0 = 1 [˙A / x]˙ φ
9 5 8 sylbi = 1 [˙A / x]˙ φ
10 3 9 syl6bi x A | φ = x A | φ = 1 [˙A / x]˙ φ
11 snidg A V A A
12 11 adantr A V x A | φ = A A A
13 eleq2 x A | φ = A A x A | φ A A
14 13 adantl A V x A | φ = A A x A | φ A A
15 12 14 mpbird A V x A | φ = A A x A | φ
16 nfcv _ x A
17 16 elrabsf A x A | φ A A [˙A / x]˙ φ
18 17 simprbi A x A | φ [˙A / x]˙ φ
19 15 18 syl A V x A | φ = A [˙A / x]˙ φ
20 19 a1d A V x A | φ = A x A | φ = 1 [˙A / x]˙ φ
21 20 ex A V x A | φ = A x A | φ = 1 [˙A / x]˙ φ
22 snprc ¬ A V A =
23 eqeq2 A = x A | φ = A x A | φ =
24 ax-1ne0 1 0
25 eqneqall 1 = 0 1 0 [˙A / x]˙ φ
26 24 25 mpi 1 = 0 [˙A / x]˙ φ
27 26 eqcoms 0 = 1 [˙A / x]˙ φ
28 5 27 sylbi = 1 [˙A / x]˙ φ
29 3 28 syl6bi x A | φ = x A | φ = 1 [˙A / x]˙ φ
30 23 29 syl6bi A = x A | φ = A x A | φ = 1 [˙A / x]˙ φ
31 22 30 sylbi ¬ A V x A | φ = A x A | φ = 1 [˙A / x]˙ φ
32 21 31 pm2.61i x A | φ = A x A | φ = 1 [˙A / x]˙ φ
33 10 32 jaoi x A | φ = x A | φ = A x A | φ = 1 [˙A / x]˙ φ
34 1 2 33 mp2b x A | φ = 1 [˙A / x]˙ φ