Description: A Hausdorff space is a T_1 space. (Contributed by FL, 11-Jun-2007) (Proof shortened by Mario Carneiro, 24-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | haust1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |
|
2 | 1 | hausnei | |
3 | simprr1 | |
|
4 | noel | |
|
5 | simprr3 | |
|
6 | 5 | eleq2d | |
7 | 4 6 | mtbiri | |
8 | simprr2 | |
|
9 | elin | |
|
10 | 9 | simplbi2com | |
11 | 8 10 | syl | |
12 | 7 11 | mtod | |
13 | 3 12 | jca | |
14 | 13 | rexlimdvaa | |
15 | 14 | reximdva | |
16 | 2 15 | mpd | |
17 | rexanali | |
|
18 | 16 17 | sylib | |
19 | 18 | 3exp2 | |
20 | 19 | imp32 | |
21 | 20 | necon4ad | |
22 | 21 | ralrimivva | |
23 | haustop | |
|
24 | toptopon2 | |
|
25 | 23 24 | sylib | |
26 | ist1-2 | |
|
27 | 25 26 | syl | |
28 | 22 27 | mpbird | |