Description: The Hausdorff condition still holds if one considers general neighborhoods instead of open sets. (Contributed by Jeff Hankins, 5-Sep-2009)
Ref | Expression | ||
---|---|---|---|
Assertion | hausnei2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ishaus2 | |
|
2 | topontop | |
|
3 | simp1 | |
|
4 | simp2 | |
|
5 | simp1 | |
|
6 | opnneip | |
|
7 | 3 4 5 6 | syl2an3an | |
8 | simp3 | |
|
9 | simp2 | |
|
10 | opnneip | |
|
11 | 3 8 9 10 | syl2an3an | |
12 | simpr3 | |
|
13 | ineq1 | |
|
14 | 13 | eqeq1d | |
15 | ineq2 | |
|
16 | 15 | eqeq1d | |
17 | 14 16 | rspc2ev | |
18 | 7 11 12 17 | syl3anc | |
19 | 18 | ex | |
20 | 19 | 3expib | |
21 | 20 | rexlimdvv | |
22 | neii2 | |
|
23 | 22 | ex | |
24 | neii2 | |
|
25 | 24 | ex | |
26 | vex | |
|
27 | 26 | snss | |
28 | 27 | anbi1i | |
29 | vex | |
|
30 | 29 | snss | |
31 | 30 | anbi1i | |
32 | simp1l | |
|
33 | simp2l | |
|
34 | ss2in | |
|
35 | ssn0 | |
|
36 | 35 | ex | |
37 | 36 | necon4d | |
38 | 34 37 | syl | |
39 | 38 | ad2ant2l | |
40 | 39 | 3impia | |
41 | 32 33 40 | 3jca | |
42 | 41 | 3exp | |
43 | 31 42 | biimtrrid | |
44 | 43 | com3r | |
45 | 44 | imp | |
46 | 45 | 3adant1 | |
47 | 46 | reximdv | |
48 | 47 | 3exp | |
49 | 48 | com34 | |
50 | 49 | 3imp | |
51 | 28 50 | biimtrrid | |
52 | 51 | reximdv | |
53 | 52 | 3exp | |
54 | 53 | com24 | |
55 | 54 | impd | |
56 | 23 25 55 | syl2and | |
57 | 56 | rexlimdvv | |
58 | 21 57 | impbid | |
59 | 58 | imbi2d | |
60 | 59 | 2ralbidv | |
61 | 2 60 | syl | |
62 | 1 61 | bitrd | |