| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ishaus2 |
|
| 2 |
|
topontop |
|
| 3 |
|
simp1 |
|
| 4 |
|
simp2 |
|
| 5 |
|
simp1 |
|
| 6 |
|
opnneip |
|
| 7 |
3 4 5 6
|
syl2an3an |
|
| 8 |
|
simp3 |
|
| 9 |
|
simp2 |
|
| 10 |
|
opnneip |
|
| 11 |
3 8 9 10
|
syl2an3an |
|
| 12 |
|
simpr3 |
|
| 13 |
|
ineq1 |
|
| 14 |
13
|
eqeq1d |
|
| 15 |
|
ineq2 |
|
| 16 |
15
|
eqeq1d |
|
| 17 |
14 16
|
rspc2ev |
|
| 18 |
7 11 12 17
|
syl3anc |
|
| 19 |
18
|
ex |
|
| 20 |
19
|
3expib |
|
| 21 |
20
|
rexlimdvv |
|
| 22 |
|
neii2 |
|
| 23 |
22
|
ex |
|
| 24 |
|
neii2 |
|
| 25 |
24
|
ex |
|
| 26 |
|
vex |
|
| 27 |
26
|
snss |
|
| 28 |
27
|
anbi1i |
|
| 29 |
|
vex |
|
| 30 |
29
|
snss |
|
| 31 |
30
|
anbi1i |
|
| 32 |
|
simp1l |
|
| 33 |
|
simp2l |
|
| 34 |
|
ss2in |
|
| 35 |
|
ssn0 |
|
| 36 |
35
|
ex |
|
| 37 |
36
|
necon4d |
|
| 38 |
34 37
|
syl |
|
| 39 |
38
|
ad2ant2l |
|
| 40 |
39
|
3impia |
|
| 41 |
32 33 40
|
3jca |
|
| 42 |
41
|
3exp |
|
| 43 |
31 42
|
biimtrrid |
|
| 44 |
43
|
com3r |
|
| 45 |
44
|
imp |
|
| 46 |
45
|
3adant1 |
|
| 47 |
46
|
reximdv |
|
| 48 |
47
|
3exp |
|
| 49 |
48
|
com34 |
|
| 50 |
49
|
3imp |
|
| 51 |
28 50
|
biimtrrid |
|
| 52 |
51
|
reximdv |
|
| 53 |
52
|
3exp |
|
| 54 |
53
|
com24 |
|
| 55 |
54
|
impd |
|
| 56 |
23 25 55
|
syl2and |
|
| 57 |
56
|
rexlimdvv |
|
| 58 |
21 57
|
impbid |
|
| 59 |
58
|
imbi2d |
|
| 60 |
59
|
2ralbidv |
|
| 61 |
2 60
|
syl |
|
| 62 |
1 61
|
bitrd |
|