Metamath Proof Explorer


Theorem hausnei2

Description: The Hausdorff condition still holds if one considers general neighborhoods instead of open sets. (Contributed by Jeff Hankins, 5-Sep-2009)

Ref Expression
Assertion hausnei2 JTopOnXJHausxXyXxyuneiJxvneiJyuv=

Proof

Step Hyp Ref Expression
1 ishaus2 JTopOnXJHausxXyXxymJnJxmynmn=
2 topontop JTopOnXJTop
3 simp1 JTopmJnJJTop
4 simp2 JTopmJnJmJ
5 simp1 xmynmn=xm
6 opnneip JTopmJxmmneiJx
7 3 4 5 6 syl2an3an JTopmJnJxmynmn=mneiJx
8 simp3 JTopmJnJnJ
9 simp2 xmynmn=yn
10 opnneip JTopnJynnneiJy
11 3 8 9 10 syl2an3an JTopmJnJxmynmn=nneiJy
12 simpr3 JTopmJnJxmynmn=mn=
13 ineq1 u=muv=mv
14 13 eqeq1d u=muv=mv=
15 ineq2 v=nmv=mn
16 15 eqeq1d v=nmv=mn=
17 14 16 rspc2ev mneiJxnneiJymn=uneiJxvneiJyuv=
18 7 11 12 17 syl3anc JTopmJnJxmynmn=uneiJxvneiJyuv=
19 18 ex JTopmJnJxmynmn=uneiJxvneiJyuv=
20 19 3expib JTopmJnJxmynmn=uneiJxvneiJyuv=
21 20 rexlimdvv JTopmJnJxmynmn=uneiJxvneiJyuv=
22 neii2 JTopuneiJxmJxmmu
23 22 ex JTopuneiJxmJxmmu
24 neii2 JTopvneiJynJynnv
25 24 ex JTopvneiJynJynnv
26 vex xV
27 26 snss xmxm
28 27 anbi1i xmmuxmmu
29 vex yV
30 29 snss ynyn
31 30 anbi1i ynnvynnv
32 simp1l xmmuynnvuv=xm
33 simp2l xmmuynnvuv=yn
34 ss2in munvmnuv
35 ssn0 mnuvmnuv
36 35 ex mnuvmnuv
37 36 necon4d mnuvuv=mn=
38 34 37 syl munvuv=mn=
39 38 ad2ant2l xmmuynnvuv=mn=
40 39 3impia xmmuynnvuv=mn=
41 32 33 40 3jca xmmuynnvuv=xmynmn=
42 41 3exp xmmuynnvuv=xmynmn=
43 31 42 biimtrrid xmmuynnvuv=xmynmn=
44 43 com3r uv=xmmuynnvxmynmn=
45 44 imp uv=xmmuynnvxmynmn=
46 45 3adant1 JTopuv=xmmuynnvxmynmn=
47 46 reximdv JTopuv=xmmunJynnvnJxmynmn=
48 47 3exp JTopuv=xmmunJynnvnJxmynmn=
49 48 com34 JTopuv=nJynnvxmmunJxmynmn=
50 49 3imp JTopuv=nJynnvxmmunJxmynmn=
51 28 50 biimtrrid JTopuv=nJynnvxmmunJxmynmn=
52 51 reximdv JTopuv=nJynnvmJxmmumJnJxmynmn=
53 52 3exp JTopuv=nJynnvmJxmmumJnJxmynmn=
54 53 com24 JTopmJxmmunJynnvuv=mJnJxmynmn=
55 54 impd JTopmJxmmunJynnvuv=mJnJxmynmn=
56 23 25 55 syl2and JTopuneiJxvneiJyuv=mJnJxmynmn=
57 56 rexlimdvv JTopuneiJxvneiJyuv=mJnJxmynmn=
58 21 57 impbid JTopmJnJxmynmn=uneiJxvneiJyuv=
59 58 imbi2d JTopxymJnJxmynmn=xyuneiJxvneiJyuv=
60 59 2ralbidv JTopxXyXxymJnJxmynmn=xXyXxyuneiJxvneiJyuv=
61 2 60 syl JTopOnXxXyXxymJnJxmynmn=xXyXxyuneiJxvneiJyuv=
62 1 61 bitrd JTopOnXJHausxXyXxyuneiJxvneiJyuv=