Metamath Proof Explorer


Theorem hcau

Description: Member of the set of Cauchy sequences on a Hilbert space. Definition for Cauchy sequence in Beran p. 96. (Contributed by NM, 16-Aug-1999) (Revised by Mario Carneiro, 14-May-2014) (New usage is discouraged.)

Ref Expression
Assertion hcau FCauchyF:x+yzynormFy-Fz<x

Proof

Step Hyp Ref Expression
1 fveq1 f=Ffy=Fy
2 fveq1 f=Ffz=Fz
3 1 2 oveq12d f=Ffy-fz=Fy-Fz
4 3 fveq2d f=Fnormfy-fz=normFy-Fz
5 4 breq1d f=Fnormfy-fz<xnormFy-Fz<x
6 5 rexralbidv f=Fyzynormfy-fz<xyzynormFy-Fz<x
7 6 ralbidv f=Fx+yzynormfy-fz<xx+yzynormFy-Fz<x
8 df-hcau Cauchy=f|x+yzynormfy-fz<x
9 7 8 elrab2 FCauchyFx+yzynormFy-Fz<x
10 ax-hilex V
11 nnex V
12 10 11 elmap FF:
13 12 anbi1i Fx+yzynormFy-Fz<xF:x+yzynormFy-Fz<x
14 9 13 bitri FCauchyF:x+yzynormFy-Fz<x