Metamath Proof Explorer


Theorem hdmap14lem15

Description: Part of proof of part 14 in Baer p. 50 line 3. Convert scalar base of dual to scalar base of vector space. (Contributed by NM, 6-Jun-2015)

Ref Expression
Hypotheses hdmap14lem12.h H=LHypK
hdmap14lem12.u U=DVecHKW
hdmap14lem12.v V=BaseU
hdmap14lem12.t ·˙=U
hdmap14lem12.r R=ScalarU
hdmap14lem12.b B=BaseR
hdmap14lem12.c C=LCDualKW
hdmap14lem12.e ˙=C
hdmap14lem12.s S=HDMapKW
hdmap14lem12.k φKHLWH
hdmap14lem12.f φFB
Assertion hdmap14lem15 φ∃!gBxVSF·˙x=g˙Sx

Proof

Step Hyp Ref Expression
1 hdmap14lem12.h H=LHypK
2 hdmap14lem12.u U=DVecHKW
3 hdmap14lem12.v V=BaseU
4 hdmap14lem12.t ·˙=U
5 hdmap14lem12.r R=ScalarU
6 hdmap14lem12.b B=BaseR
7 hdmap14lem12.c C=LCDualKW
8 hdmap14lem12.e ˙=C
9 hdmap14lem12.s S=HDMapKW
10 hdmap14lem12.k φKHLWH
11 hdmap14lem12.f φFB
12 eqid ScalarC=ScalarC
13 eqid BaseScalarC=BaseScalarC
14 1 2 3 4 5 6 7 8 9 10 11 12 13 hdmap14lem14 φ∃!gBaseScalarCxVSF·˙x=g˙Sx
15 1 2 5 6 7 12 13 10 lcdsbase φBaseScalarC=B
16 reueq1 BaseScalarC=B∃!gBaseScalarCxVSF·˙x=g˙Sx∃!gBxVSF·˙x=g˙Sx
17 15 16 syl φ∃!gBaseScalarCxVSF·˙x=g˙Sx∃!gBxVSF·˙x=g˙Sx
18 14 17 mpbid φ∃!gBxVSF·˙x=g˙Sx