Description: The inner product (Hermitian form) ( X , Y ) will be defined as ( ( SY )X ) . Show closure. (Contributed by NM, 7-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hdmapipcl.h | |
|
hdmapipcl.u | |
||
hdmapipcl.v | |
||
hdmapipcl.r | |
||
hdmapipcl.b | |
||
hdmapipcl.s | |
||
hdmapipcl.k | |
||
hdmapipcl.x | |
||
hdmapipcl.y | |
||
Assertion | hdmapipcl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hdmapipcl.h | |
|
2 | hdmapipcl.u | |
|
3 | hdmapipcl.v | |
|
4 | hdmapipcl.r | |
|
5 | hdmapipcl.b | |
|
6 | hdmapipcl.s | |
|
7 | hdmapipcl.k | |
|
8 | hdmapipcl.x | |
|
9 | hdmapipcl.y | |
|
10 | eqid | |
|
11 | eqid | |
|
12 | 1 2 3 10 11 6 7 9 | hdmapcl | |
13 | 1 2 3 4 5 10 11 7 12 8 | lcdvbasecl | |