Metamath Proof Explorer


Theorem hdmapipcl

Description: The inner product (Hermitian form) ( X , Y ) will be defined as ( ( SY )X ) . Show closure. (Contributed by NM, 7-Jun-2015)

Ref Expression
Hypotheses hdmapipcl.h H=LHypK
hdmapipcl.u U=DVecHKW
hdmapipcl.v V=BaseU
hdmapipcl.r R=ScalarU
hdmapipcl.b B=BaseR
hdmapipcl.s S=HDMapKW
hdmapipcl.k φKHLWH
hdmapipcl.x φXV
hdmapipcl.y φYV
Assertion hdmapipcl φSYXB

Proof

Step Hyp Ref Expression
1 hdmapipcl.h H=LHypK
2 hdmapipcl.u U=DVecHKW
3 hdmapipcl.v V=BaseU
4 hdmapipcl.r R=ScalarU
5 hdmapipcl.b B=BaseR
6 hdmapipcl.s S=HDMapKW
7 hdmapipcl.k φKHLWH
8 hdmapipcl.x φXV
9 hdmapipcl.y φYV
10 eqid LCDualKW=LCDualKW
11 eqid BaseLCDualKW=BaseLCDualKW
12 1 2 3 10 11 6 7 9 hdmapcl φSYBaseLCDualKW
13 1 2 3 4 5 10 11 7 12 8 lcdvbasecl φSYXB