Metamath Proof Explorer


Theorem hfext

Description: Extensionality for HF sets depends only on comparison of HF elements. (Contributed by Scott Fenton, 16-Jul-2015)

Ref Expression
Assertion hfext A Hf B Hf A = B x Hf x A x B

Proof

Step Hyp Ref Expression
1 dfcleq A = B x x A x B
2 unvdif Hf V Hf = V
3 2 raleqi x Hf V Hf x A x B x V x A x B
4 ralv x V x A x B x x A x B
5 3 4 bitr2i x x A x B x Hf V Hf x A x B
6 ralunb x Hf V Hf x A x B x Hf x A x B x V Hf x A x B
7 1 5 6 3bitri A = B x Hf x A x B x V Hf x A x B
8 vex x V
9 eldif x V Hf x V ¬ x Hf
10 8 9 mpbiran x V Hf ¬ x Hf
11 hfelhf x A A Hf x Hf
12 11 stoic1b A Hf ¬ x Hf ¬ x A
13 12 adantlr A Hf B Hf ¬ x Hf ¬ x A
14 hfelhf x B B Hf x Hf
15 14 stoic1b B Hf ¬ x Hf ¬ x B
16 15 adantll A Hf B Hf ¬ x Hf ¬ x B
17 13 16 2falsed A Hf B Hf ¬ x Hf x A x B
18 10 17 sylan2b A Hf B Hf x V Hf x A x B
19 18 ralrimiva A Hf B Hf x V Hf x A x B
20 19 biantrud A Hf B Hf x Hf x A x B x Hf x A x B x V Hf x A x B
21 7 20 bitr4id A Hf B Hf A = B x Hf x A x B