Metamath Proof Explorer


Theorem hfext

Description: Extensionality for HF sets depends only on comparison of HF elements. (Contributed by Scott Fenton, 16-Jul-2015)

Ref Expression
Assertion hfext AHfBHfA=BxHfxAxB

Proof

Step Hyp Ref Expression
1 dfcleq A=BxxAxB
2 unvdif HfVHf=V
3 2 raleqi xHfVHfxAxBxVxAxB
4 ralv xVxAxBxxAxB
5 3 4 bitr2i xxAxBxHfVHfxAxB
6 ralunb xHfVHfxAxBxHfxAxBxVHfxAxB
7 1 5 6 3bitri A=BxHfxAxBxVHfxAxB
8 vex xV
9 eldif xVHfxV¬xHf
10 8 9 mpbiran xVHf¬xHf
11 hfelhf xAAHfxHf
12 11 stoic1b AHf¬xHf¬xA
13 12 adantlr AHfBHf¬xHf¬xA
14 hfelhf xBBHfxHf
15 14 stoic1b BHf¬xHf¬xB
16 15 adantll AHfBHf¬xHf¬xB
17 13 16 2falsed AHfBHf¬xHfxAxB
18 10 17 sylan2b AHfBHfxVHfxAxB
19 18 ralrimiva AHfBHfxVHfxAxB
20 19 biantrud AHfBHfxHfxAxBxHfxAxBxVHfxAxB
21 7 20 bitr4id AHfBHfA=BxHfxAxB