Metamath Proof Explorer


Theorem hfninf

Description: _om is not hereditarily finite. (Contributed by Scott Fenton, 16-Jul-2015)

Ref Expression
Assertion hfninf ¬ωHf

Proof

Step Hyp Ref Expression
1 elirr ¬ωω
2 elhf2g ωHfωHfrankωω
3 ordom Ordω
4 elong ωHfωOnOrdω
5 3 4 mpbiri ωHfωOn
6 r111 R1:On1-1V
7 f1dm R1:On1-1VdomR1=On
8 6 7 ax-mp domR1=On
9 8 eleq2i ωdomR1ωOn
10 rankonid ωdomR1rankω=ω
11 9 10 bitr3i ωOnrankω=ω
12 5 11 sylib ωHfrankω=ω
13 12 eleq1d ωHfrankωωωω
14 2 13 bitrd ωHfωHfωω
15 1 14 mtbiri ωHf¬ωHf
16 pm2.01 ωHf¬ωHf¬ωHf
17 15 16 ax-mp ¬ωHf