Metamath Proof Explorer


Theorem hfsn

Description: The singleton of an HF set is an HF set. (Contributed by Scott Fenton, 15-Jul-2015)

Ref Expression
Assertion hfsn AHfAHf

Proof

Step Hyp Ref Expression
1 ranksng AHfrankA=sucrankA
2 elhf2g AHfAHfrankAω
3 2 ibi AHfrankAω
4 peano2 rankAωsucrankAω
5 3 4 syl AHfsucrankAω
6 1 5 eqeltrd AHfrankAω
7 snex AV
8 7 elhf2 AHfrankAω
9 6 8 sylibr AHfAHf