Description: The singleton of an HF set is an HF set. (Contributed by Scott Fenton, 15-Jul-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | hfsn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ranksng | |
|
2 | elhf2g | |
|
3 | 2 | ibi | |
4 | peano2 | |
|
5 | 3 4 | syl | |
6 | 1 5 | eqeltrd | |
7 | snex | |
|
8 | 7 | elhf2 | |
9 | 6 8 | sylibr | |