Metamath Proof Explorer


Theorem hfuni

Description: The union of an HF set is itself hereditarily finite. (Contributed by Scott Fenton, 16-Jul-2015)

Ref Expression
Assertion hfuni AHfAHf

Proof

Step Hyp Ref Expression
1 rankuni rankA=rankA
2 rankon rankAOn
3 ontr rankAOnTrrankA
4 2 3 ax-mp TrrankA
5 df-tr TrrankArankArankA
6 4 5 mpbi rankArankA
7 elhf2g AHfAHfrankAω
8 7 ibi AHfrankAω
9 rankon rankAOn
10 1 9 eqeltrri rankAOn
11 10 onordi OrdrankA
12 ordom Ordω
13 ordtr2 OrdrankAOrdωrankArankArankAωrankAω
14 11 12 13 mp2an rankArankArankAωrankAω
15 6 8 14 sylancr AHfrankAω
16 1 15 eqeltrid AHfrankAω
17 uniexg AHfAV
18 elhf2g AVAHfrankAω
19 17 18 syl AHfAHfrankAω
20 16 19 mpbird AHfAHf