Metamath Proof Explorer


Theorem hfuni

Description: The union of an HF set is itself hereditarily finite. (Contributed by Scott Fenton, 16-Jul-2015)

Ref Expression
Assertion hfuni A Hf A Hf

Proof

Step Hyp Ref Expression
1 rankuni rank A = rank A
2 rankon rank A On
3 2 ontrci Tr rank A
4 df-tr Tr rank A rank A rank A
5 3 4 mpbi rank A rank A
6 elhf2g A Hf A Hf rank A ω
7 6 ibi A Hf rank A ω
8 rankon rank A On
9 1 8 eqeltrri rank A On
10 9 onordi Ord rank A
11 ordom Ord ω
12 ordtr2 Ord rank A Ord ω rank A rank A rank A ω rank A ω
13 10 11 12 mp2an rank A rank A rank A ω rank A ω
14 5 7 13 sylancr A Hf rank A ω
15 1 14 eqeltrid A Hf rank A ω
16 uniexg A Hf A V
17 elhf2g A V A Hf rank A ω
18 16 17 syl A Hf A Hf rank A ω
19 15 18 mpbird A Hf A Hf