Metamath Proof Explorer


Theorem hhhl

Description: The Hilbert space structure is a complex Hilbert space. (Contributed by NM, 10-Apr-2008) (New usage is discouraged.)

Ref Expression
Hypothesis hhhl.1 U=+norm
Assertion hhhl UCHilOLD

Proof

Step Hyp Ref Expression
1 hhhl.1 U=+norm
2 1 hhnv UNrmCVec
3 eqid IndMetU=IndMetU
4 1 3 hhcms IndMetUCMet
5 1 hhba =BaseSetU
6 5 3 iscbn UCBanUNrmCVecIndMetUCMet
7 2 4 6 mpbir2an UCBan
8 1 hhph UCPreHilOLD
9 ishlo UCHilOLDUCBanUCPreHilOLD
10 7 8 9 mpbir2an UCHilOLD